10000 Releases · strongio/torchcast · GitHub
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

Releases: strongio/torchcast

v0.6.0

29 Apr 15:22
b739a5e
Compare
Choose a tag to compare

v0.6.0 (2025-04-25)

Updated default fit() behavior

The fit() method of torchcast.state_space.StateSpaceModel has been updated:

  • The default LBFGS settings have been updated to avoid the unnecessary inner loop (see here).
  • The default convergence settings have been updated to increase patience to 2 (instead of 1) and increase max_iter to 300 (instead of 200).
  • To restore the old behavior, pass optimizer=lambda p: torch.optim.LBFGS(p, max_eval=8, line_search_fn='strong_wolfe'), stopping={'patience' : 1, 'max_iter' : 200}.
  • Convergence is now controlled by a torch.utils.Stopping instance (or kwargs for one). This means passing tol, patience, and max_iter directly to fit is deprecated; instead call fit(stopping={'patience' : ... etc}).

Updated default Covariance behavior

  • The 'low_rank' method is never chosen by default; if desired it must be selected manually using the 'method' kwarg (previously would automatically be chosen if rank was >= 10). This was based on poor performance empirically.
  • The starting values for the covariance diagonal have been increased.
  • Added initial_covariance kwarg to KalmanFilter and subclasses.

Updates to BinomialFilter

  • Added the observed_counts argument, allowing the user to specify whether observations are counts or proportions. If num_obs==1 then this argument is not required (since they are the same).
  • Fix bug in BinomialStep's kalman-gain calculation when num_obs > 1
  • Fix issues with BinomialFilter on the GPU.
  • Fix __getitem__() for BinomialPredictions.
  • Fix monte-carlo BinomialPredictions.log_prob() to properly marginalize over samples.

Other Fixes

  • Fix get_durations() on GPU.
  • Remove redundant matmul in KalmanStep._update()
  • ss_step is no longer a property but is instead an attribute, avoids unnecessary re-instantiation on each timestep

v0.5.1

10 Jan 04:02
Compare
Choose a tag to compare

v0.5.1 (2025-01-09)

Documentation

Trainers

Add torchcast.utils.training module with...

  • SimpleTrainer for training simple nn.Modules
  • SeasonalEmbeddingsTrainer for training nn.Modules to embed seasonal patterns.
  • StateSpaceTrainer for training torchcast's StateSpaceModels (when data are too big for the fit() method)

Baseline

  • Add make_baseline helper to generate baseline forecasts using a simple n-back method 3641e7c

Fixes

  • Ensure consistent column-ordering and default RangeIndex in output of Predictions.to_dataframe() 0a0fc81, f33c638
  • Fix default behavior in how TimeSeriesDataLoader forward-fills nans for the X tensor 0a0fc81
  • Fix seasonal initial values when passing initial_value to forward cae2879
  • Fix behavior of StateSpaceModel.simulate() when num_sims > 1 cae2879
  • Fix extra arg in ExpSmoother._generate_predictions() b553248
  • Make TimeSeriesDataset.split_measures() usable by removing which argument 8f1001b

v0.4.1

09 Oct 20:28
Compare
Choose a tag to compare

v0.4.1 (2024-10-09)

Continuous Integration

  • ci: Update actions/checkout version (ed64632)

  • ci: Clone repo using PAT (d0adaca)

  • ci: Enable repo push (f565d2a)

  • ci: Use SSH Key (469d531)

  • ci: Fix docs job permissions (e6e2e34)

  • ci: Pick python version form pyproject.toml (2a9eef7)

  • ci: Setup auto-release (9df4f26)

Documentation

  • docs: Fix examples (6f5a2dc)

  • docs: AirQuality datasets [skip ci] (c675f04)

  • docs: Self-hosted docs and fixtures (baca184)

Fixes

Refactoring

  • refactor: Switch to pyproject.toml (6de2f27)
0