-
Notifications
You must be signed in to change notification settings - Fork 0
schultzelab/GOAna
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
######################################################################################################################################## ################################################## How to run GOAna #################################################################### ######################################################################################################################################## #+++++++++++++++++++++++++++++++++++++++++++++++++++ Preparation ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# Packages which need to be installed: - affy - annotate - GO.db - annotation library for the Array Chip in use (e.g. hgu133plus2.db or hgu133a.db and so on) #+++++++++++++++++++++++++++++++++++++++++++++++++++ Description +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# Provided scripts: - defineGOIDs.R - getdistances_calls.R - CreateCytoscape.R defineGOIDs: - defines the list of GOIDs the analysis will be run on - Input: - chip: Array type (without ".db" at the end) default: hgu133a - numprobesets_low: the minimal number of probesets per GOID default: 5 - numprobesets_high: the maximum number of probesets per GOID default: 10000 - category: GO category of IDs default: "BP" (biological processes) - GO.node: point in the GO hierarchy to start default: "GO:0008150" (biological_process) - Output: vector of GO IDs together with corresponding probe IDs getdistances_calls: - calculates distances - Input: - inputdata: expression matrix with probesets as rownames - calls: T or F (TRUE or FALSE), whether there is a call (A,P,M) for each ProbeID on the chip - call.file: if calls == T, then you have to give the file which includes the calls default: TRUE - numpresent: minimum number of samples in which a probe should be present default: 5 - GOIDs: GOIDs to use as returned by defineGOIDs - classes: sample affiliations - outputfile: name of output file - chip: array type to use, e.g. "hgu133a", "illuminaHumanv3" default: "hgu133a" - permutations: number of permutations to calculate significance default: 1000 - Output: .txt file containing the GOIDs together with p-values; in the case of more than two groups, the file will contain a p-value for each pairwise comparison CreateCytoscape - extends the significant GOIDs and creates a contrib-network - Input: - GOIDs: a vector of GOIDs to analyze - calls: T or F (TRUE or FALSE), whether there is a call (A,P,M) for each ProbeID on the chip default: TRUE - datacalls: if calls == T, then you have to give the file which includes the calls - intersection: determines the number of shared GOIDs between two genes default: 2 - chip: Array type to use, e.g. "hgu133a", "illuminaHumanv3" default: "hgu133a" - comparison: in the case of more than two groups, specify the pairwise comparison of interest as character, it will be used for the output file names (e.g. "A_vs_B") default: "1" function(GOIDs,calls=T,datacalls,intersection=2,chip=, ) #++++++++++++++++++++++++++++++++++++++++++++++++++++ Example ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++# # set working directory setwd("X/Y/Z") # load script source files source("defineGOIDs.R") source("getdistances_calls.R") source("CreateCytoscape.R") # load example data # reference: Mootha et al. 2003, Nature Genetics) load("diabetes_data.RData") load("classes_diabetes_data.RData") # calculate GOIDs GOIDs_BP <- defineGOIDs(chip = "hgu133a") # calculate distances, this example runs about (start: 11.28) distances <- getdistances_calls(diabetes_data,calls=F,GOIDs=GOIDs_BP,classes=classes_diabetes_data,outputfile="ResultGOAna_DiabetesData_BP.txt", chip = "hgu133a") # read in results text file res_GOAna <- read.delim("ResultGOAna_DiabetesData_BP.txt", header = TRUE, stringsAsFactor = FALSE, check.names = FALSE) # Define the column name for the p-values of the comparison you are interested in group <- "p-value 1 vs 2" # define significant GO IDs with a desired p-value cutoff, here 0.01 sig_GOIDs <- res_GOAna[res_GOAna[,group] < 0.01,1] # create a Cytoscape network createCytoscape(sig_GOIDs,calls=F, chip = "hgu133a", comparison = group) # depending on the data, the network will be quite large; increase the interaction parameter to reduce the network # Finally, import the generated .sif file as network into Cytoscape
About
No description, website, or topics provided.
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published