8000 GitHub - schwallergroup/steer
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

schwallergroup/steer

Repository files navigation

Chemical Reasoning in LLMs for Synthesis Planning and Mechanism Elucidation

tests DOI:10.48550/arXiv.2503.08537 PyPI PyPI - Python Version Documentation Status Code style: black

Overview of LLMs as chemical reasoning engines

Overview

This repository contains the implementation of a novel framework that leverages LLMs as chemical reasoning engines to guide traditional search algorithms in chemistry. Our approach demonstrates how LLMs can be effectively used for:

  1. Strategy-aware Retrosynthetic Planning: Enable chemists to specify desired synthetic strategies in natural language and find routes that satisfy these constraints.
  2. Mechanism Elucidation: Guide the search for plausible reaction mechanisms by combining chemical principles with systematic exploration.

Key Features

  • 🧪 Natural language specification of synthetic strategies
  • 🔍 LLM-guided search through chemical space
  • 📊 Benchmark datasets for both synthesis planning and mechanism elucidation
  • 🤖 Support for multiple LLM providers (Claude, GPT-4, DeepSeek)

Installation

# Install from PyPI (TBD)
pip install steer

# Install from source
pip install git+https://github.com/schwallergroup/steer.git

Quick Start

Steerable Synthesis Planning

# Run the complete synthesis benchmark
steer synth --model=claude-3-5-sonnet bench

# Run a single task
steer synth --model=claude-3-5-sonnet bench --task=ea8df340d54596eda93e23f04dff3a9b

Mechanism Finding

# Run mechanism elucidation benchmark
steer mech --model=claude-3-5-sonnet bench

Benchmarks

The repository includes two main benchmarks:

Synthesis Planning Benchmark

  • Multiple target molecules of varying complexity
  • Strategic constraints specified in natural language
  • Evaluation metrics for route-to-prompt alignment

Mechanism Elucidation Benchmark

  • 12 diverse organic reactions
  • Ground truth mechanisms with elementary steps
  • Performance metrics for mechanism prediction

Citation

If you use this work in your research, please cite:

@misc{bran2025chemicalreasoningllmsunlocks,
      title={Chemical reasoning in LLMs unlocks steerable synthesis planning and reaction mechanism elucidation}, 
      author={Andres M Bran and Theo A Neukomm and Daniel P Armstrong and Zlatko Jončev and Philippe Schwaller},
      year={2025},
      eprint={2503.08537},
      archivePrefix={arXiv},
      primaryClass={cs.AI},
      url={https://arxiv.org/abs/2503.08537}, 
}

Development

Click to expand development instructions

Setup Development Environment

git clone https://github.com/schwallergroup/steer.git
cd steer
pip install -e .

Running Tests

pip install tox
tox

License

MIT License

Contributors

  • Andres M Bran
  • Théo A. Neukomm
  • Daniel Armstrong
  • Zlatko Jončev
  • Philippe Schwaller

Contact

For questions and feedback:

About

No description, website, or topics provided.

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  
0