A full-stack application for company, person, and market research using Google's Gemini AI model.
- Company Research: Deep analysis of companies using AI
- Person Research: Comprehensive research on individuals within companies
- Market Research: In-depth analysis of market trends and opportunities
- Modern UI with split-view layout
- Real-time research results display
A React application built with TypeScript and Material-UI that provides a user interface for company, person, and market research.
- Install dependencies:
cd frontend
npm install
- Start the development server:
npm run dev
- Build for production:
npm run build
- Deploy to Google Cloud Storage:
gsutil -m cp -r dist/* gs://company-research-frontend-2024/
Google Cloud Functions that provide company, person, and market research using Google's Gemini AI model.
- Install the Google Cloud CLI and initialize it:
gcloud init
- Set up your environment variables in Google Cloud:
gcloud functions deploy company-research \
--runtime python39 \
--trigger-http \
--allow-unauthenticated \
--set-env-vars GOOGLE_API_KEY=your_api_key_here
- Deploy the functions:
gcloud functions deploy company-research \
--runtime python39 \
--trigger-http \
--allow-unauthenticated \
--entry-point company_research
gcloud functions deploy person-research \
--runtime python39 \
--trigger-http \
--allow-unauthenticated \
--entry-point person_research
gcloud functions deploy market-research \
--runtime python39 \
--trigger-http \
--allow-unauthenticated \
--entry-point market_research
Once deployed, you can test the functions using curl:
# Company Research
curl -X POST https://YOUR_REGION-YOUR_PROJECT_ID.cloudfunctions.net/company-research \
-H "Content-Type: application/json" \
-d '{"company": "Apple"}'
# Person Research
curl -X POST https://YOUR_REGION-YOUR_PROJECT_ID.cloudfunctions.net/person-research \
-H "Content-Type: application/json" \
-d '{"person": "John Doe", "company": "Apple"}'
# Market Research
curl -X POST https://YOUR_REGION-YOUR_PROJECT_ID.cloudfunctions.net/market-research \
-H "Content-Type: application/json" \
-d '{"market": "AI"}'
To test locally:
- Install dependencies:
pip install -r requirements.txt
- Set your environment variables:
export GOOGLE_API_KEY=your_api_key_here
- Run the functions locally:
functions-framework --target company_research
functions-framework --target person_research
functions-framework --target market_research
- Endpoint:
/company-research
- Method: POST
- Body:
{"company": "Company Name"}
- Returns: Detailed company analysis in markdown format
- Endpoint:
/person-research
- Method: POST
- Body:
{"person": "Person Name", "company": "Company Name"}
- Returns: Detailed person analysis in markdown format
- Endpoint:
/market-research
- Method: POST
- Body:
{"market": "Market Name"}
- Returns: Detailed market analysis in markdown format
-
Frontend:
- React
- TypeScript
- Material-UI
- Vite
-
Backend:
- Python
- Google Cloud Functions
- Google Gemini AI
- Functions Framework
The application is deployed on Google Cloud Platform:
- Frontend: Google Cloud Storage
- Backend: Google Cloud Functions
- AI: Google Gemini AI