8000 GitHub - temolzin/pythonRAG
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

temolzin/pythonRAG

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RAG API with Gemini & Confluence

This project provides a RESTful API that answers natural language questions using a RAG (Retrieval-Augmented Generation) pipeline powered by:

  • Google Gemini (gemini-1.5-pro or gemini-2.5-flash-preview)
  • LangChain
  • FAISS
  • Confluence Cloud as a document source

🚀 Features

  • 🔐 Loads page content directly from a Confluence page using API Token authentication
  • 📄 Splits and embeds content for semantic retrieval
  • 🤖 Uses Gemini LLM to generate context-aware answers
  • 🛡 Built with FastAPI
  • 🔌 Ready for local deployment and Colab prototyping

📦 Setup Instructions (Local)

1. Clone the repository

git clone https://github.com/temolzin/pythonRAG
cd pythonRAG

2. Create a virtual environment

python3 -m venv venv
# On Linux/macOS:
source venv/bin/activate
# On Windows:
venv\Scripts\activate

3. Install dependencies

pip install -r requirements.txt

4. Configure environment variables

cp .env.example .env

5. Run the API

#Replace main with your actual script/module name (e.g., rag_api:app).
uvicorn main:app --reload

🔍 API Usage

Once running, go to:

http://localhost:8000/docs

From there, you can test the POST /query endpoint interactively with Swagger UI.

#Example request:
{
"query": "Who is responsible for changing the task status to 'READY FOR DEPLOY'?"
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

0