8000 GitHub - thu-coai/HPSS: HPSS: Heuristic Prompting Strategy Search for LLM Evaluators (ACL 2025 Findings)
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

thu-coai/HPSS

Repository files navigation

HPSS: Heuristic Prompting Strategy Search for LLM Evaluators

This is the official implementation of HPSS: Heuristic Prompting Strategy Search for LLM Evaluators. Our Paper

⚙️ Requirements

To install requirements:

pip install -r requirements.txt

🌳 File Structure

HPSS
├── auxiliary
│   ├── hanna
│   ├── sfhot
│   ├── sfres
│   ├── summeval
│   └── topical_chat
├── baseline
│   ├── ape_prompts
│   ├── ape.py
│   ├── greedy.py
│   ├── opro_prompt
│   └── opro.py
├── data
│   ├── hanna
│   ├── sfhot
│   ├── sfres
│   ├── summeval
│   └── topical_chat
├── evaluation
│   ├── scripts
│   ├── dataset2aspects.py
│   └── evaluation_aspects.py
├── initiation
│   ├── metrics
│   ├── scripts
│   ├── dataset2aspects.py
│   └── judge_vllm_aspects.py
├── prompts
│   ├── initiation
│   └── search
├── README.md
├── args.py
├── dataset2aspects.py
├── factors.py
├── hpss.py
├── item.py
├── requirements.txt
├── utils.py
├── validation.py
└── vllm_inference.py

auxiliary/: Auxiliary information for factors Autocot, Evaluation Criteria, and In-Context Example.

baseline/: Existing automatic prompt optimization methods we implement.

data/: The validation and test dataset. Auxiliary information for factors Reference and Metrics are placed in each data sample.

evaluation/: Scripts for calculating the correlation coefficient.

inference/: Scripts for utilizing LLM-as-a-Judge to text evaluation.

initiation/: The implementation of the Initialization stage in our algorithm.

prompts/: Prompt templates used in HPSS.

hpss.py: The implementation of the Iterative Search stage in our algorithm.

🚀 Running HPSS

We have placed the results of the Initialization stage in initiation/metrics/ for each dataset. You can run the following script to run HPSS to search for well-behaved prompting strategies.

python hpss.py \
    --model <model> \
    --dataset <dataset> \
    --budget <budget> \
    --beam_size <beam_size> \
    --seed <seed> \
    --temperature <temperature>
    --lambda_ <lambda_> \
    --rho <rho> \
    --g <g> \
    --initiation_path <initiation_path> \
    --output_path <output_path> \
    --aspect <aspect>

Here is an example:

python hpss.py
    --model qwen_2_5_14b \
    --dataset topical_chat \
    --budget 50 \
    --beam_size 5 \
    --seed 42 \
    --temperature 5.0 \
    --lambda_ 4.0 \
    --rho 0.2 \
    --g 2 \
    --initiation_path initiation/metrics \
    --output_path hpss_results \
    --aspect coherence \

After running the scripts, you can find the results saved in hpss_results/.

👏 Citation

@article{wen2025hpss,
  title={HPSS: Heuristic Prompting Strategy Search for LLM Evaluators},
  author={Wen, Bosi and Ke, Pei and Sun, Yufei and Wang, Cunxiang and Gu, Xiaotao and Zhou, Jinfeng and Tang, Jie and Wang, Hongning and Huang, Minlie},
  journal={arXiv preprint arXiv:2502.13031},
  year={2025}
}

Please kindly cite our paper if this paper and the codes are helpful.

About

HPSS: Heuristic Prompting Strategy Search for LLM Evaluators (ACL 2025 Findings)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
0