8000 GitHub - vishnutez/daps-si: Official Code Implementation for "Improving Diffusion Inverse Problem Solving with Decoupled Noise Annealing" (CVPR 2025))
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

Official Code Implementation for "Improving Diffusion Inverse Problem Solving with Decoupled Noise Annealing" (CVPR 2025))

Notifications You must be signed in to change notification settings

vishnutez/daps-si

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DAPS: Improving Diffusion Inverse Problem Solving with Decoupled Noise Annealing (CVPR 2025)

img

Abstract

We propose a new method called Decoupled Annealing Posterior Sampling (DAPS) that relies on a novel noise annealing process to solve posterior sampling with diffusion prior. Specifically, we decouple consecutive steps in a diffusion sampling trajectory, allowing them to vary considerably from one another while ensuring their time-marginals anneal to the true posterior as we reduce noise levels.

img

This approach enables the exploration of a larger solution space, improving the success rate for accurate reconstructions. We demonstrate that DAPS significantly improves sample quality and stability across multiple image restoration tasks, particularly in complicated nonlinear inverse problems.

News:

  • 2025-03: update code structure and usability to support different MCMC algorithms and various types of diffusion models. The previous code structure has been moved to the legacy branch. Major updates are summarized as below:

    1. update diffusion schulers in cores/scheduler.py.

    2. update MCMC sampler to support different algorithms and approximations in cores/mcmc.py.

    3. enhance LatentDAPS with $\texttt{HMC}$ which sustantially improve the performance.

🕹️ Try and Play with DAPS on Colab!

Link Description
Open In Colab Try DAPS on demo datasets with different diffusion models.
Open In Colab Customizing DAPS for New Inverse Problems

💻 Getting start locally

1. Prepare the Environment

  • python 3.8
  • PyTorch 2.3
  • CUDA 12.1

Lower version of PyTorch with proper CUDA should work but not be fully tested.

# in DAPS folder

conda create -n DAPS python=3.8
conda activate DAPS

pip install -r requirements.txt

# (optional) install PyTorch with proper CUDA
conda install pytorch==2.3.0 torchvision==0.18.0 torchaudio==2.3.0 pytorch-cuda=12.1 -c pytorch -c nvidia

We use bkse for nonlinear blurring and motionblur for motion blur. No further action required then.

2. Prepare the pretrained checkpoint

2.1 pixel diffusion model

Download the public available FFHQ and ImageNet checkpoint (ffhq_10m.pt, imagenet256.pt) here.

# in DAPS folder

mkdir checkpoints
mv {DOWNLOAD_DIR}/ffqh_10m.pt checkpoints/ffhq256.pt
mv {DOWNLOAD_DIR}/imagenet256.pt.pt checkpoints/imagenet256.pt

2.2 latent diffusion model (LDM)

Download the public available LDM checkpoint for FFHQ and ImageNet with following commands:

# in DAPS folder

wget https://ommer-lab.com/files/latent-diffusion/ffhq.zip -P ./checkpoints
unzip checkpoints/ffhq.zip -d ./checkpoints
mv checkpoints/model.ckpt checkpoints/ldm_ffhq256.pt
rm checkpoints/ffhq.zip

wget https://ommer-lab.com/files/latent-diffusion/nitro/cin/model.ckpt -P ./checkpoints/
mv checkpoints/model.ckpt checkpoints/ldm_imagenet256.pt

2.3 stable diffusion

Checkpoints will be automatically downloaded.

(Optional) For nonlinear deblur task, we need the pretrained model from bkse at here:

# in DAPS folder

mv {DOWNLOAD_DIR}/GOPRO_wVAE.pth forward_operator/bkse/experiments/pretrained

3. (Optional) Prepare the test dataset

You can download the selected test dataset used here, unzip and move to dataset folder. Otherwise, you can test on our provided 10 demo images at dataset\demo-ffhq and dataset\demo-imagenet.

4. Posterior sampling with DAPS

Now you are ready to run. For phase retrieval with DAPS-1k and ffhq256ddpm model in 4 runs for 10 demo FFHQ images in dataset/demo-ffhq:

python posterior_sample.py \
+data=demo-ffhq \
+model=ffhq256ddpm \
+task=phase_retrieval \
+sampler=edm_daps \
task_group=pixel \
save_dir=results \
num_runs=4 \
sampler.diffusion_scheduler_config.num_steps=5 \
sampler.annealing_scheduler_config.num_steps=200 \
batch_size=10 \
data.start_id=0 data.end_id=10 \
name=phase_retrieval_demo \
gpu=0

It takes about 8 minutes (2 for each run) and 6G GPU memory on a single NVIDIA A100-SXM4-80GB GPU. The results are saved at foloder \results.

Full commands on test dataset

Full comands used to reproduce the results in paper are provided in commands folder:

  • pixel space diffusion: commands/pixel.sh
  • latent diffusion: commands/ldm.sh
  • stable diffusion: commands/sd.sh

Supported diffusion models

Model Dataset Model Config Name Sampler Task Group
ffhq-256 FFHQ ffhq256ddpm edm_daps pixel
imagenet-256 ImageNet imagenet256ddpm edm_daps pixel
ldm-ffhq-256 FFHQ ffhq256ldm latent_edm_daps ldm
ldm-imagenet-256 ImageNet imagenet256ldm latent_edm_daps ldm
sd-v1.5 Any stable-diffusion-v1.5 sd_edm_daps sd
sd-v2.1 Any stable-diffusion-v2.1 sd_edm_daps sd

Command template

python posterior_sample.py \
+data={DATASET_CONFIG_NAME} \
+model={MODEL_CONFIG_NAME} \
+task={TASK_CONFIG_NAME} \
+sampler={SAMPLER_CONFIG_NAME} \
task_group={pixel, ldm, sd} # choose the used task parameters group \
save_dir=results \
num_runs={NUMBER_OF_RUNS} \
sampler.diffusion_scheduler_config.num_steps={DIFFUSION_ODE_STEPS} \
sampler.annealing_scheduler_config.num_steps={ANNEALING_STEPS} \
batch_size=100 \
name={SUB_FOLDER_NAME} \
gpu=0

Currently supported tasks are:

  • phase_retrieval: phase retrival of oversample ratio of 2.0

  • down_sampling: super resolution ($\times$4)

  • inpainting: 128x128 box inpainting

  • inpainting_rand: 70% random inpainting

  • gaussian_blur: gaussian deblur of kernel size 61 and intensity 3

  • motion_blur: gaussian deblur of kernel size 61 and intensity 0.5

  • nonlinear_blur: nonlinear deblur of default setting in bkse repo

  • hdr: high dynamic range reconstruction of factor 2

Citation

If you find our work interesting, please consider citing

@misc{zhang2024improvingdiffusioninverseproblem,
      title={Improving Diffusion Inverse Problem Solving with Decoupled Noise Annealing}, 
      author={Bingliang Zhang and Wenda Chu and Julius Berner and Chenlin Meng and Anima Anandkumar and Yang Song},
      year={2024},
      eprint={2407.01521},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2407.01521}, 
}

About

Official Code Implementation for "Improving Diffusion Inverse Problem Solving with Decoupled Noise Annealing" (CVPR 2025))

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 89.1%
  • Python 10.4%
  • Other 0.5%
0