🍾 POP-3D: Open-Vocabulary 3D Occupancy Prediction from Images
Antonin Vobecky  Oriane Siméoni  David Hurych  Spyros Gidaris  Andrei Bursuc  Patrick Pérez  Josef Sivic 
Welcome to the official implrmrntation of POP-3D: Open-Vocabulary 3D Occupancy Prediction from Images
@article{
vobecky2023POP3D,
title={POP-3D: Open-Vocabulary 3D Occupancy Prediction from Images},
author={Antonin Vobecky and Oriane Siméoni and David Hurych and Spyros Gidaris and Andrei Bursuc and Patrick Pérez and Josef Sivic},
booktitle = {Advances in Neural Information Processing Systems},
volume = {37},
year = {2023}
}
Please, have GCC 5 or higher.
Run the following script to prepare the pop3d
conda environment:
conda env create -f conda_env.yaml
Download weights from this link and put them to ./ckpts
Step 0. Create a conda environment, activate it and install requirements
cd MaskCLIP
conda create -n maskclip python=3.9
conda activate maskclip
pip install --no-cache-dir -r requirements.txt
pip install --no-cache-dir opencv-python
Step 1. Install PyTorch and Torchvision following official instructions, e.g., fo4 PyTorch 1.10 with CUDA 10.2:
pip install --no-cache-dir torch==1.10.1+cu111 torchvision==0.11.2+cu111 torchaudio==0.10.1 -f https://download.pytorch.org/whl/cu111/torch_stable.html
Step 2. Install MMCV:
pip install --no-cache-dir mmcv-full==1.5.0