8000 GitHub - wzwvv/MVCNet: [Preparing] Multi-View Contrastive Network (MVCNet) for Motor Imagery Classification
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content
/ MVCNet Public

[Preparing] Multi-View Contrastive Network (MVCNet) for Motor Imagery Classification

Notifications You must be signed in to change notification settings

wzwvv/MVCNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MVCNet

This repository provides the official implementation of MVCNet: Multi-View Contrastive Network for Motor Imagery Classification.

MVCNet is a dual-branch framework that integrates multi-view data augmentation, CNN–Transformer parallel modeling, and supervised contrastive learning to improve representation learning and decoding generalizability of EEG-based MI Classification.

image

📁 Project Structure

The codebase is organized as follows:

MVCNet/
│
├── MVCNet_CO.py        # Main script for the Chronological Order (CO) scenario
├── MVCNet_CV.py        # Main script for the Cross-Validation (CV) scenario
├── MVCNet_LOSO.py      # Main script for the Leave-One-Subject-Out (LOSO) scenario
│
├── models/             # Implementations of MVCNet and baseline models
│   ├── IFNet.py
│   ├── Conformer.py
│   └── ...
│
├── data/             # datasets
│   ├── BNCI2014001
│   ├── Zhou2016
│   └── ...
│
├── utils/              # Utility functions
│   ├── data_augment.py     # Data augmentation (e.g., time, frequency, spatial)
│   ├── contrastive_loss.py # Contrastive loss definitions
│   ├── network.py          # encoder, decoder, etc
│   └── ...
│
└── README.md

🧪 Experimental Scenarios

MVCNet supports three standard MI decoding paradigms:

  • CO (Chronological Order): Within-subject, time-based data split
  • CV (Cross-Validation): Within-subject, stratified 5-fold validation. The data partitions were structured chronologically while maintaining class-balance, following FBCNet.
  • LOSO (Leave-One-Subject-Out): Cross-subject generalization evaluation

📊 Comparison with Baseline Models

Classification Accuracy (%) ± Std on Five MI Datasets under CO setting:

Dataset EEGNet SCNN DCNN FBCNet ADFCNN EEGConformer IFNet MVCNet (Ours)
BNCI2014001 69.05 ± 1.00 73.57 ± 2.36 59.29 ± 1.64 68.97 ± 1.26 73.73 ± 2.26 78.57 ± 0.66 77.94 ± 0.93 83.17 ± 0.74
Zhou2016 80.13 ± 3.35 75.03 ± 6.15 78.03 ± 2.37 63.33 ± 2.29 71.42 ± 1.95 73.87 ± 4.51 81.70 ± 2.08 84.11 ± 2.68
Blankertz2007 78.79 ± 2.78 76.71 ± 2.09 70.00 ± 4.12 75.93 ± 1.31 76.07 ± 1.41 82.29 ± 2.62 84.00 ± 0.57 87.07 ± 0.52
BNCI2014002 66.07 ± 2.76 79.07 ± 1.96 64.07 ± 2.70 69.50 ± 0.95 73.00 ± 1.95 76.21 ± 1.46 78.29 ± 1.68 81.29 ± 2.31
BNCI2015001 75.58 ± 1.69 83.71 ± 1.34 71.08 ± 1.82 74.92 ± 0.97 78.75 ± 0.62 82.63 ± 0.54 83.83 ± 0.90 85.67 ± 0.55
Average 73.92 77.62 68.49 70.53 74.59 78.71 81.15 84.26

🔬 Ablation Study

Classification Accuracy (%) ± Std on Five MI Datasets under CO Setting:

Dataset MVCNet MVCNet (cvc) MVCNet (cmc)
BNCI2014001 83.17 ± 0.74 82.70 ± 1.05 82.46 ± 0.46
Zhou2016 84.11 ± 2.68 83.18 ± 3.07 82.22 ± 2.61
Blankertz2007 87.07 ± 0.52 85.71 ± 1.30 86.21 ± 1.42
BNCI2014002 81.29 ± 2.31 81.29 ± 1.82 81.21 ± 1.92
BNCI2015001 85.67 ± 0.55 85.67 ± 0.08 85.42 ± 0.32
Average 84.26 83.71 83.51
  • MVCNet: using both CVC and CMC contrastive modules.
  • MVCNet (cvc): only using the cross-view contrasting module.
  • MVCNet (cmc): only using the cross-model contrasting module.

📂 Dataset

For reproducibility, the preprocessed EEG dataset BNCI2014001 can be accessed at (put X.npy into /data/BNCI2014001/):

🔗 https://pan.baidu.com/s/19osNsaDnNliQTXxiK3ncOA  (提取码: pdtg)

All datasets can be downloaded from the Mother Of All BCI Benchmarks (MOABB)


💡 Citation

If you find this work helpful, please consider citing our paper:

@article{wang2025mvcnet,
      title={MVCNet: Multi-View Contrastive Network for Motor Imagery Classification}, 
      author={Ziwei Wang and Siyang Li and Xiaoqing Chen and Wei Li and Dongrui Wu},
      journal={arXiv preprint arXiv:2502.17482},
      year={2025}
}

🙌 Acknowledgments

Special thanks to Jiaheng for providing the source code of IFNet, which served as a valuable foundation for our implementation.

We appreciate your interest and patience. Feel free to raise issues or pull requests for questions or improvements.

About

[Preparing] Multi-View Contrastive Network (MVCNet) for Motor Imagery Classification

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

0