8000 GitHub - wangzhongzhen/CNNIQA: CVPR2014-Convolutional neural networks for no-reference image quality assessment
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

wangzhongzhen/CNNIQA

 
 

Repository files navigation

CNNIQA

PyTorch 0.4 implementation of the following paper: Kang L, Ye P, Li Y, et al. Convolutional neural networks for no-reference image quality assessment[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2014: 1733-1740.

Note

The optimizer is chosen as Adam here, instead of the SGD with momentum in the paper.

Training

CUDA_VISIBLE_DEVICES=0 python main.py --exp_id=0 --database=LIVE

Before training, the im_dir in config.yaml must to be specified. Train/Val/Test split ratio in intra-database experiments can be set in config.yaml (default is 0.6/0.2/0.2).

Evaluation

Test Demo

python test_demo.py --im_path=data/I03_01_1.bmp

Cross Dataset

python test_cross_dataset.py --help

TODO: add metrics calculation. SROCC, KROCC can be easily get. PLCC, RMSE, MAE, OR should be calculated after a non-linear fitting since the quality score ranges are not the same across different IQA datasets.

Visualization

tensorboard --logdir=tensorboard_logs --port=6006

Requirements

About

CVPR2014-Convolutional neural networks for no-reference image quality assessment

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 99.4%
  • Shell 0.6%
0