8000 GitHub - wangqiang-codes/TGAE
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

wangqiang-codes/TGAE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TGAE: Temporal Graph Autoencoder for Travel Forecasting

This is the PyTorch implementation of the paper:

Q. Wang, H. Jiang, M. Qiu, Y. Liu and D. Ye, "TGAE: Temporal Graph Autoencoder for Travel Forecasting," in IEEE Transactions on Intelligent Transportation Systems, 2023, doi: 10.1109/TITS.2022.3202089.

Requirements

  • python==3.8.8
  • networkx
  • numpy
  • pandas
  • sklearn
  • torch==1.9.0
  • torch-cluster==1.5.9
  • torch-scatter==2.0.9
  • torch-sparse==0.6.12
  • torch-spline-conv==1.2.1
  • torchvision==0.10.0
  • torch-geometric==2.0.4

Data

The pre-processed data is under the folder data.

Run

  1. Specify the arguments in the train.py.
  2. Run the code by python train.py.

Citation

Please cite the following paper, if you find the repository or the paper useful.

@ARTICLE{9889163,
author={Wang, Qiang and Jiang, Hao and Qiu, Meikang and Liu, Yifeng and Ye, Dongsheng},
journal={IEEE Transactions on Intelligent Transportation Systems},
title={TGAE: Temporal Graph Autoencoder for Travel Forecasting},
year={2023},
volume={24},
number={8},
pages={8529-8541},
doi={10.1109/TITS.2022.3202089}}

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

0