8000 GitHub - wb014/FreeGS
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content
8000

wb014/FreeGS

Repository files navigation

FreeGS [AAAI'25]

Approach

This repository contains the official implementation of the paper "Bootstraping Clustering of Gaussians for View-consistent 3D Scene Understanding", an unsupervised semantic-embedded 3DGS framework that achieves view-consistent 3D scene understanding without the need for 2D labels. For more details, please refer to: [Paper].

News

-[25-05-18] We released the main code of FreeGS.

Overview

  • TODO
  • Setup
  • Training
  • Evaluation
  • Citation
  • Acknowledgments

TODO

  • Release the code for training on the LERF-Mask dataset.
  • Release the evaluation code.
  • Release the code on other datasets.

Setup

  • Clone the repository
git clone https://github.com/wb014/FreeGS && cd FreeGS
  • Setup environment
conda create -n freegs python=3.10
conda activate freegs
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=11.8 -c pytorch -c nvidia
pip install -r environment.txt

# install msplat for rasterization
git clone https://github.com/pointrix-project/msplat.git --recursive
cd msplat
pip install .

# install cuml following https://docs.rapids.ai/install/

Training

  • Step 1: Train Gaussians for scene reconstruction based on mini-splatting.

  • Step 2: Train the FreeGS:

python train_freegs.py -s datasets/lerf_mask/${scenename} -m outputs/${scenename} --eval --start_checkpoint outputs/${scenename}/chkpnt30000.pth --exp_name ${expname}

Evaluation

TODO

Citation

If you find FreeGS helpful, please consider giving this repository a star and citing:

@inproceedings{zhang2025bootstraping,
  title={Bootstraping clustering of gaussians for view-consistent 3d scene understanding},
  author={Zhang, Wenbo and Zhang, Lu and Hu, Ping and Ma, Liqian and Zhuge, Yunzhi and Lu, Huchuan},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  volume={39},
  number={10},
  pages={10166--10175},
  year={2025}
}

Acknowledgments

We thank 3DGS, LangSplat, MSplat, Mini-Splatting, FeatUp for their efforts.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

0