8000 GitHub - xfactlab/Eye4B
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

xfactlab/Eye4B

Repository files navigation

Can LVLMs and Automatic Metrics Capture Underlying Preferences of Blind and Low-Vision Individuals for Navigational Aid?

📜 News

🚀 [2025/2/15] The arxiv paper is released!

😀 Summary

  • BLV User Preferences on LVLMs – This study explores Blind-and-Low-Vision (BLV) user preferences on different response styles from Large Vision-Language Models (LVLMs) for navigational aid.
  • Eye4B Dataset & Benchmark – The Eye4B dataset includes 1.1k human-validated indoor/outdoor scenes with BLV-relevant requests, and an Eye4B benchmark evaluates how well existing metrics align with BLV preferences.
  • User Study & Key Evaluation Criteria – An in-depth user study with eight BLV participants assesses six LVLMs based on Afraidness, Nonactionability, Sufficiency, and Conciseness, providing insights for developing BLV-aware AI systems.

Requirements

All the requirements are in environs/.

Environment name Description
brl training
lric evaluation
llava for LLaVA model
intern_clean for InternLM model
polo for Polaris dataset

Data Structure

/projects/brl
├── mobility
│   ├── chosen_final
│   ├── ├── sideguide
│   ├── ├── sidewalk
│   ├── ├── outdoor
│   ├── ├── indoor
│   ├── results
│   ├── score_results
│   ├── irb
│   ├── ├── nov
│   ├── ├── dec
├── education

Scenario Generation

export OPENAI_API_KEY=[YOUR API KEY]
bash scripts/generate_scenario_[one_sample/pilot_samples/final_samples].sh
bash scripts/translate_korean_final_samples.sh

Deep Context Generation

7B models

cd VL-ICL
python I2T_inference.py \
--query_dataset [query.json/mobility_pilot_study.json/mobility_pilot_study_extra.json] \
--engine [qwen-vl/openflamingo/llava16-7b/internlm-x2/otter-llama/qwen-vl-chat]

GPT-4o

export OPENAI_API_KEY=[YOUR API KEY]
bash scripts/generate_deepcontexts_[one_sample/pilot_samples/final_samples].sh

Deep Context Evaluation

bash scripts/evaluate_[final_samples].sh
Dataset Context Dataset
brl *3/4-shot_mobility_pilot_study.json
polaris polaris_test.csv
pascal50s VOCdevkit/VOC2010
foil foilv1.0_test_2017.json
flickr8k_expert flickr8k.json
flickr8k_cf crowdflower_flickr8k.json
filtered_oid OID-rated-image-captions.v2.dev.alignment.tsv
filtered_polaris yuwd
imgreward_test ImageReward/data
brl_new export*
brl_final gp_overall/gp_avg

BLIP-based Metric Training

cd Github/ImageReward/train
bash scripts/train_one_node.sh

Reward Model-based Metric Training

Change configurations in recipes/samples/rm_bt.yaml.
The accelerate configurations are in accelerate_config/ds3.yaml.

python train_bt_pilot.py 
sh scripts/train_bt_pilot.sh

References

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
0