8000 GitHub - xinli12/HEP-Coursework: This repository contains implementations for the A3 High Energy Physics Minor Module Coursework (MPhil in Data Intensive Science, University of Cambridge).
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

This repository contains implementations for the A3 High Energy Physics Minor Module Coursework (MPhil in Data Intensive Science, University of Cambridge).

Notifications You must be signed in to change notification settings

xinli12/HEP-Coursework

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

HEP Minor Module Coursework (A3)

Overview

This repository contains the code and report for the HEP Minor Module Coursework (A3).

  • A2: Weight sharing layers for rotation-equivariant image processing
  • B1: Higgs boson discovery analysis using ATLAS Open Data
  • C2: Event classification for Z boson decay identification using neural networks

Repository Structure

.
├── A2_weight_sharing_layers/   # Section A implementation
│   ├── A2_weight_sharing.ipynb # Main notebook
│   ├── figures/                # Generated figures
│   ├── src/                    # Source code
│   └── requirements.txt        # Dependencies
├── B1_Higgs/                   # Section B implementation
│   ├── datasets/               # Data storage
│   ├── notebooks/              # Analysis notebooks
│   ├── src/                    # Source code
│   └── requirements.txt        # Dependencies
├── C2_event_classification/    # Section C implementation
│   ├── datasets/               # Data storage
│   ├── notebooks/              # Analysis notebooks
│   ├── run/                    # Scripts to run experiments
│   ├── src/                    # Source code
│   └── requirements.txt        # Dependencies
├── report/                     # PDF report
└── README.md                   # This file

Setup and Installation

Requirements

  • Python 3.8+
  • Additional packages as listed in each section's requirements.txt file

Installation

# Create a virtual environment (optional)
python -m venv hep_env
source hep_env/bin/activate     # hep_env\Scripts\activate on Windows

# Install dependencies for Section A2
pip install -r A2_weight_sharing_layers/requirements.txt

# Install dependencies for Section B1
pip install -r B1_Higgs/requirements.txt

# Install dependencies for Section C2
pip install -r C2_event_classification/requirements.txt

Report

The final report is available in the report/ directory.

Use of AI Tools

Literature Review

  • Utilised “Deep research” (OpenAI) and “DeepSearch” (xAI) for high-level overviews and literature searches

Development Assistance

  • Initial code scaffolding and project structure design
  • Template generation for configuration files (requirements, .gitignore, etc.)
  • Assistance with network architecture design
  • Script prototyping for model training (.py, .sh)
  • Debugging support and performance optimisation

Documentation

  • README generation and documentation structuring
  • Code commenting and function-level documentation

Code Quality

  • Refactoring suggestions to enhance readability
  • Implementation optimisation

AI tools used: Claude (Anthropic), ChatGPT (OpenAI), Grok (xAI)

About

This repository contains implementations for the A3 High Energy Physics Minor Module Coursework (MPhil in Data Intensive Science, University of Cambridge).

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
0