Website β’ Paper β’ OSWorld-G Benchmark β’ Jedi-3B β’ Jedi-7B β’ Jedi Dataset (4 million)
This is the official repository for "Scaling Computer-Use Grounding via UI Decomposition and Synthesis", which includes the benchmark--OSWorld-G and dataset pipeline--Jedi. We also provide links to the models (Jedi-3B, Jedi-7B) and dataset (Jedi) here.
- 2025-05-19: Initial release of this repository.
First, clone this repository and cd
into it. Then, install the dependencies listed in requirements.txt
. We recommend using the latest version of Conda to manage the environment, but you can also choose to manually install the dependencies. Please ensure that Python version is >= 3.9.
# Clone the OSWorld-G(Jedi) repository
# Clone the OSWorld-G(Jedi) repository
git clone https://github.com/xlang-ai/OSWorld-G.git
# Change directory into the cloned repository
cd OSWorld-G
conda create -n osworld-g python=3.9
conda activate osworld-g
# Go to one folder(take dataset/icon as an example)
cd dataset/icon
# Install required dependencies
pip install -r requirements.txt
To use our model, we recommend using vllm
. You need to carefully follow the computer use agent template from Qwen-2.5-VL, and be very careful with the image size to enable the best performance. We show a small example here (You can also run demo.py
to see the demo):
import json
import re
from PIL import Image, ImageDraw
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
from agent_function_call import ComputerUse
from transformers.models.qwen2_vl.image_processing_qwen2_vl_fast import smart_resize
from transformers import Qwen2_5_VLProcessor
from huggingface_hub import hf_hub_download
model_path = "xlangai/Jedi-3B-1080p"
# model_path = "xlangai/Jedi-7B-1080p"
FN_CALL_TEMPLATE = """You are a helpful assistant.
# Tools
You may call one or more functions to assist with the user query.
You are provided with function signatures within <tools></tools> XML tags:
<tools>
{tool_descs}
</tools>
For each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:
<tool_call>
{{"name": <function-name>, "arguments": <args-json-object>}}
</tool_call>"""
def visualize_click_position(image, coords, circle_radius=9, point_radius=3):
draw = ImageDraw.Draw(image)
x, y = coords
draw.ellipse(
[x - circle_radius, y - circle_radius, x + circle_radius, y + circle_radius],
outline="lightgreen",
width=2,
)
draw.ellipse(
[x - point_radius, y - point_radius, x + point_radius, y + point_radius],
fill="lightgreen",
)
return image
def parse_coordinates(response):
match = re.search(r"<tool_call>(.*?)</tool_call>", response, re.DOTALL)
action = None
if not match:
raise ValueError("No <tool_call> block found in response.")
try:
action = json.loads(match.group(1))
except json.JSONDecodeError as e:
raise ValueError(f"Failed to parse tool_call JSON: {e}")
action_name = action["name"]
action_type = action["arguments"]["action"]
action_args = action["arguments"]["coordinate"]
if (
action_name != "computer_use"
or action_type
not in ("mouse_move", "left_click", "right_click", "double_click")
or action_args is None
):
print(f"Error parsing coordinates: {response}")
return None
return action_args
def main():
processor = Qwen2_5_VLProcessor.from_pretrained(model_path)
input_image = Image.open("demo_image.png")
instruction = "Open the filter function for search settings."
resized_height, resized_width = smart_resize(
input_image.height,
input_image.width,
factor=processor.image_processor.patch_size
* processor.image_processor.merge_size,
min_pixels=processor.image_processor.min_pixels,
max_pixels=processor.image_processor.max_pixels,
)
computer_use = ComputerUse(
cfg={
"display_width_px": resized_width,
"display_height_px": resized_height,
}
)
tools = [computer_use.function]
tool_descs = [{"type": "function", "function": f} for f in tools]
tool_descs = "\n".join([json.dumps(f, ensure_ascii=False) for f in tool_descs])
llm = LLM(
model=model_path,
tokenizer_mode="slow",
dtype="bfloat16",
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(
model_path, trust_remote_code=True, use_fast=False
)
chat_template_path = hf_hub_download(
repo_id=model_path, filename="chat_template.json"
)
with open(chat_template_path, "r") as f:
tokenizer.chat_template = json.load(f)["chat_template"]
messages = [
{
"role": "system",
"content": [
{
"type": "text",
"text": FN_CALL_TEMPLATE.format(tool_descs=tool_descs),
}
],
},
{
"role": "user",
"content": [
{
"type": "image",
},
{
"type": "text",
"text": instruction,
},
],
},
]
sampling_params = SamplingParams(
temperature=0.01,
max_tokens=1024,
top_k=1,
)
message = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
outputs = llm.generate(
{
"prompt_token_ids": message,
"multi_modal_data": {
"image": input_image,
},
},
sampling_params=sampling_params,
)
generated_tokens = outputs[0].outputs[0].token_ids
response = tokenizer.decode(generated_tokens, skip_special_tokens=True)
predicted_coords = parse_coordinates(response)
print("predicted_coords: ", predicted_coords)
if predicted_coords:
viz_image = visualize_click_position(input_image, predicted_coords)
viz_image.save("click_visualization.png")
return predicted_coords
if __name__ == "__main__":
main()
You'll get the predicted coordinates of the click position, and the visualization of the click position will be saved as click_visualization.png
like below:
We provide our OSWorld-G benchmark with original instructions (benchmark/OSWorld-G.json
) and refined instructions (benchmark/OSWorld-G_refined.json
) (pure grounding tasks that require minimal additional knowledge). The benchmark data and pipeline code are available in the benchmark
folder, along with a series of evaluation scripts in the evaluation
folder.
For instructions on running evaluations, please refer to the Evaluation section and README.md
in the evaluation
folder.
Our dataset is available at https://huggingface.co/datasets/xlangai/Jedi
In this repository, we provide the code for the data collection pipeline.
The pipeline code for icon data is provided in dataset/icon
.
The complete code-and-rendering pipeline code is available in dataset/component_render
.
For the real-world augmentation pipeline, we provide code for document data, spreadsheet data, and presentation data in dataset/component_handcraft
.
The code for layout data collection is provided in dataset/layout
.
The code for refusal data collection is provided in dataset/refusal
.
We have provided a series of evaluation scripts in the benchmark
folder for different models (Jedi, Aguvis, UGround, UI-TARS) and benchmarks (OSWorld-G, ScreenSpot-v2, ScreenSpot-Pro). You can easily extend these scripts to test additional model-benchmark combinations.
If you find this work useful, please consider citing our paper:
@misc{xie2025scalingcomputerusegroundinguser,
title={Scaling Computer-Use Grounding via User Interface Decomposition and Synthesis},
author={Tianbao Xie and Jiaqi Deng and Xiaochuan Li and Junlin Yang and Haoyuan Wu and Jixuan Chen and Wenjing Hu and Xinyuan Wang and Yuhui Xu and Zekun Wang and Yiheng Xu and Junli Wang and Doyen Sahoo and Tao Yu and Caiming Xiong},
year={2025},
eprint={2505.13227},
archivePrefix={arXiv},
primaryClass={cs.AI},
url={https://arxiv.org/abs/2505.13227},
}