8000 GitHub - yuqALL/tinynn: A lightweight deep learning library
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

yuqALL/tinynn

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

tinynn

Build Status

tinynn is a lightweight deep learning framework written in Python3 (with NumPy).

tinynn-architecture

Getting Started

Install

pip install tinynn

Examples

62D6
git clone https://github.com/borgwang/tinynn.git
cd tinynn/examples

# MNIST classification
python mnist/run.py  

# a toy regression task
python nn_paint/run.py  

# reinforcement learning demo (gym environment required)
python rl/run.py

Components

  • layers: Dense, Conv2D, ConvTranspose2D, RNN, MaxPool2D, Dropout, BatchNormalization
  • activation: ReLU, LeakyReLU, Sigmoid, Tanh, Softplus
  • losses: SoftmaxCrossEntropy, SigmoidCrossEntropy, MAE, MSE, Huber
  • optimizer: RAdam, Adam, SGD, Momentum, RMSProp, Adagrad, Adadelta

Contribute

Please follow the Google Python Style Guide for Python coding style.

In addition, please sort the module import order alphabetically in each file. To do this, one can use tools like isort (be sure to use --force-single-line-imports option to enforce the coding style).

License

MIT

About

A lightweight deep learning library

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%
0