8000 GitHub - ymcdull/ppca: a Python implementation of Probabilistic PCA
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

ymcdull/ppca

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 

Repository files navigation

ppca

The ppca packages implements different inference methods for Probabilistic Principal Component Analysis described by Christopher Bishop.

Python implementation followed the way from the book A First Course in Machine Learning by Simon Rogers and Mark Girolami from Chapter 7.5 to 7.7

ppca.py: probabilistic PCA for continuous values (Simon's book Chapter 7.5), update tau, X and W when doing EM.

probit_ppca.py: probit ppca for binary values (Simon's book Chapter 7.7), apply probit function, update Q, bias, X and W when doing EM.

Also, borrowed some code from: https://github.com/cangermueller/ppca

About

a Python implementation of Probabilistic PCA

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
0