8000 GitHub - zhoujiahuan1991/MM2024-CKP
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

zhoujiahuan1991/MM2024-CKP

Repository files navigation

[ACM MM2024] Mitigate Catastrophic Remembering via Continual Knowledge Purification for Noisy Lifelong Person Re-Identification (CKP)

The *official* repository for [Mitigate Catastrophic Remembering via Continual Knowledge Purification for Noisy Lifelong Person Re-Identification](https://openreview.net/pdf?id=ROsHwGMYeJ).

Framework

Installation

conda create -n IRL python=3.7
conda activate IRL
pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 torchaudio==0.13.1 --extra-index-url https://download.pytorch.org/whl/cu117
pip install -r requirement.txt

Prepare Datasets

Download the person re-identification datasets Market-1501, MSMT17, CUHK03, SenseReID. Other datasets can be prepared following Torchreid_Datasets_Doc and light-reid. Then unzip them and rename them under the directory like

PRID
├── CUHK01
│   └──..
├── CUHK02
│   └──..
├── CUHK03
│   └──..
├── CUHK-SYSU
│   └──..
├── DukeMTMC-reID
│   └──..
├── grid
│   └──..
├── i-LIDS_Pedestrain
│   └──..
├── MSMT17_V2
│   └──..
├── Market-1501
│   └──..
├── prid2011
│   └──..
├── SenseReID
│   └──..
└── viper
    └──..

This repository includes noisy label configurations, located in the noisy_data/ folder. Along with the noisy ratios of 0.1, 0.2, and 0.3 used in the paper, we also provide additional ratios of 0.4, 0.5, 0.6, 0.7, and 0.8 to support further investigation for the Noisy LReID community. Note that the noisy data are generated following PNet.

Quick Start

Training on a single dataset (--noise random/pattern/clean, --noise_ratio 0.1/0.2/0.3/0.4/...):

`python continual_train_noisy.py --data-dir path/to/PRID --noise_ratio XX --noise YY`
(for example, `python continual_train_noisy.py --data-dir ../DATA/PRID --noise_ratio 0.3 --noise pattern`)

Reproduce the random/pattern noise results by running the bash file:

`sh release_random.sh`
`sh release_pattern.sh`

Evaluation from checkpoint:

`python continual_train_noisy.py --data-dir path/to/PRID --test_folder /path/to/pretrained/folder`

Results

The following results were obtained with a NVIDIA 4090 GPU.

Results

Citation

If you find this code useful for your research, please cite our paper. @inproceedings{xu2024mitigate, title={Mitigate Catastrophic Remembering via Continual Knowledge Purification for Noisy Lifelong Person Re-Identification}, author={Xu, Kunlun and Zhang, Haozhuo and Li, Yu and Peng, Yuxin and Zhou, Jiahuan}, booktitle={ACM Multimedia 2024} }

Acknowledgement

Our LReID code is based on LSTKC and CORE.

Contact

For any questions, feel free to contact us (xkl@stu.pku.edu.cn).

Welcome to our Laboratory Homepage (OV3 Lab) for more information about our papers, source codes, and datasets.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages

0