A comprehensive collection of machine learning projects, implementations, and tutorials covering various ML techniques and applications.
- Breast Cancer Prediction
Breast cancer prediction.py
- Python implementationBreast_Cancer_Classification_with_NN.ipynb
- Neural Network approach- Uses
breast cancer dataset.csv
- Diabetes Prediction
Diabetes_Prediction.ipynb
- Diabetes classification model- Uses
diabetes.csv
dataset
- Simple Linear Regression (
simple_linear_regression.ipynb
) - Multiple Linear Regression (
multiple_linear_regression.ipynb
) - BONUS Multiple Linear Regression (
BONUS_multiple_linear_regression.ipynb
) - Polynomial Regression (
polynomial_regression.ipynb
) - Support Vector Regression (
support_vector_regression.ipynb
)
- Bank Customer Segmentation (
Perform Bank Customers Segmentation - Solution
)
- Speech Emotion Recognition (
speech_emotion.ipynb
) - Flower Detection (
flower detection.ipynb
)
- Movie Recommendation Engine (
Movie Rec.ipynb
)
- Bandit Algorithms Implementation (
Multi-Armed Bandits.py
)- Epsilon-Greedy, UCB, Thompson Sampling, and Gradient Bandit algorithms
- Comparison framework with visualization
- Handling Missing Data (
Handling Missing Data in a Dataset for Machine Learning.py
) - Encoding Categorical Data (
Encoding Categorical Data for Machine Learning.py
) - Data Preprocessing Tools
data_preprocessing_tools.ipynb
data_preprocessing_tools (1).ipynb
data_preprocessing_tools (2).ipynb
- Kernel SVM (
kernel_svm.ipynb
) - Logistic Regression (
Simple logistic regression.py
)
- Quikr Car Analysis (
Quikr_Analysis.ipynb
) - Usesquikr_car.csv
breast cancer dataset.csv
- Breast cancer classification datadiabetes.csv
- Diabetes prediction datasetquikr_car.csv
- Car price analysis data
- Python
- Jupyter Notebooks
- Google Colaboratory
- Machine Learning Libraries: Scikit-learn, TensorFlow, Pandas, NumPy, Matplotlib
-
Clone this repository
git clone https://github.com/SanthoshD123/ML-projects.git cd ML-projects
-
Install required dependencies
pip install numpy pandas matplotlib scikit-learn tensorflow jupyter
-
Run the notebooks in Jupyter or Google Colab based on your preference
- ✅ Multi-Armed Bandits Implementation - Added comprehensive bandit algorithms with comparison framework
- 🔄 Updated README - Improved documentation and project structure
This repository contains educational machine learning projects. Shared for learning and reference purposes.
Contributions are welcome! Feel free to:
- Add new ML implementations
- Improve existing algorithms
- Fix bugs or optimize code
- Enhance documentation
GitHub: @SanthoshD123