8000 Tags · ginkgo-project/ginkgo · GitHub
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

Tags: ginkgo-project/ginkgo

Tags

v1.10.0

Toggle v1.10.0's commit message

Verified

This commit was created on GitHub.com and signed with GitHub’s verified signature.
Merge Release 1.10.0

The Ginkgo team is proud to announce the new Ginkgo minor release 1.10.0.
This release brings new features such as:
- Support for bfloat16 precision. The type `gko::bfloat16` can now be selected in most instances as the value type of a matrix, solver, preconditioner, etc. If the selected backend supports bfloat16 as a native type, the native type is used within the kernels, otherwise they may incur a conversion overhead. The new behavior is enabled by default, but it can be turned off during CMake configuration.
- Mixed precision support in our distributed matrix, provided the underlying matrix formats support mixed precision.
- New pipelined CG solver. This specialization of the CG solver is suitable to reduce the communication overhead in large scale distributed computations.
- New Chebyshev iteration solver.
- An OpenMP implementation of the merge-path based SpMV algorithm.

And more!

See the changelog for more details.

v1.9.0

Toggle v1.9.0's commit message

Verified

This commit was created on GitHub.com and signed with GitHub’s verified signature.
Merge Release 1.9.0

The Ginkgo team is proud to announce the new Ginkgo minor release 1.9.0.

This release brings new features such as:
- Support for half precision (IEEE FP16). The type `gko::half` can now be selected in most instances as the value type
  of a matrix, solver, preconditioner, etc. If the selected backend supports FP16 as a native type, the native type is
  used within the kernels, otherwise an overhead might occur. The new behavior is enabled by default, but it can be
  turned off during configuration.
- New implementations of the ILU and IC factorization for CUDA, HIP, OpenMP, and Reference backends. These are
  available in addition to the existing implementations based on the vendor libraries cuSPARSE and hipSPARSE.
- New (S)SOR and Gauss-Seidel preconditioners.
- Simplifyied distributed matrix assembly by exchanging local rows between neighboring processes.

And more!

See [the Changelog](./CHANGELOG.md) for more information.

v1.8.0

Toggle v1.8.0's commit message

Verified

This commit was created on GitHub.com and signed with GitHub’s verified signature.
Merge Release 1.8.0

Release 1.8.0

The Ginkgo team is proud to announce the new Ginkgo minor release 1.8.0. This
release brings new features such as:
- A brand new file-based configuration for Ginkgo objects: you can now construct
  Ginkgo objects
8000
 (solvers, preconditioners, ...) from a JSON configuration file.
  This simplifies interfacing to Ginkgo as well as exploring different settings
  to solve a problem.
- Expand the batched feature set with: the Batched CSR Matrix format, batched CG
  solver, batched (Block-)Jacobi preconditioner, usage example and other
  features such as scaling,
- New Distributed Multigrid and the PGM coarsening method,
- New CUDA and HIP kernels for Reverse Cuthill McKee (RCM) reordering
- Better Ginkgo and Kokkos interaction thanks to a mapping from simple Ginkgo
  types to native Kokkos types

and more!

If you face an issue, please first check our [known issues page](https://github.com/ginkgo-project/ginkgo/wiki/Known-Issues) and the [open issues list](https://github.com/ginkgo-project/ginkgo/issues) and if you do not find a solution, feel free to [open a new issue](https://github.com/ginkgo-project/ginkgo/issues/new/choose) or ask a question using the [github discussions](https://github.com/ginkgo-project/ginkgo/discussions).

For detailed changes, please check our [CHANGELOG.md](./CHANGELOG.md) file.

Related PR: #1622

v1.7.0

Toggle v1.7.0's commit message

Verified

This commit was created on GitHub.com and signed with GitHub’s verified signature. The key has expired.
Merge Release 1.7.0 to master

Release 1.7.0 to master

The Ginkgo team is proud to announce the new Ginkgo minor release 1.7.0. This release brings new features such as:
- Complete GPU-resident sparse direct solvers feature set and interfaces,
- Improved Cholesky factorization performance,
- A new MC64 reordering,
- Batched iterative solver support with the BiCGSTAB solver with batched Dense and ELL matrix types,
- MPI support for the SYCL backend,
- Improved ParILU(T)/ParIC(T) preconditioner convergence,
and more!

If you face an issue, please first check our [known issues page](https://github.com/ginkgo-project/ginkgo/wiki/Known-Issues) and the [open issues list](https://github.com/ginkgo-project/ginkgo/issues) and if you do not find a solution, feel free to [open a new issue](https://github.com/ginkgo-project/ginkgo/issues/new/choose) or ask a question using the [github discussions](https://github.com/ginkgo-project/ginkgo/discussions).

Supported systems and requirements:
+ For all platforms, CMake 3.16+
+ C++14 compliant compiler
+ Linux and macOS
  + GCC: 5.5+
  + clang: 3.9+
  + Intel compiler: 2019+
  + Apple Clang: 14.0 is tested. Earlier versions might also work.
  + NVHPC: 22.7+
  + Cray Compiler: 14.0.1+
  + CUDA module: CMake 3.18+, and CUDA 10.1+ or NVHPC 22.7+
  + HIP module: ROCm 4.5+
  + DPC++ module: Intel oneAPI 2022.1+ with oneMKL and oneDPL. Set the CXX compiler to `dpcpp` or `icpx`.
  + MPI: standard version 3.1+, ideally GPU Aware, for best performance
+ Windows
  + MinGW: GCC 5.5+
  + Microsoft Visual Studio: VS 2019+
  + CUDA module: CUDA 10.1+, Microsoft Visual Studio
  + OpenMP module: MinGW.

### Version support changes

+ CUDA 9.2 is no longer supported and 10.0 is untested [#1382](#1382)
+ Ginkgo now requires CMake version 3.16 (and 3.18 for CUDA) [#1368](#1368)

### Interface changes

+ `const` Factory parameters can no longer be modified through `with_*` functions, as this breaks const-correctness [#1336](#1336) [#1439](#1439)

### New Deprecations

+ The `device_reset` parameter of CUDA and HIP executors no longer has an effect, and its `allocation_mode` parameters have been deprecated in favor of the `Allocator` interface. [#1315](#1315)
+ The CMake parameter `GINKGO_BUILD_DPCPP` has been deprecated in favor of `GINKGO_BUILD_SYCL`. [#1350](#1350)
+ The `gko::reorder::Rcm` interface has been deprecated in favor of `gko::experimental::reorder::Rcm` based on `Permutation`. [#1418](#1418)
+ The Permutation class' `permute_mask` functionality. [#1415](#1415)
+ Multiple functions with typos (`set_complex_subpsace()`, range functions such as `conj_operaton` etc). [#1348](#1348)

### Summary of previous deprecations
+ `gko::lend()` is not necessary anymore.
+ The classes `RelativeResidualNorm` and `AbsoluteResidualNorm` are deprecated in favor of `ResidualNorm`.
+ The class `AmgxPgm` is deprecated in favor of `Pgm`.
+ Default constructors for the CSR `load_balance` and `automatical` strategies
+ The PolymorphicObject's move-semantic `copy_from` variant
+ The templated `SolverBase` class.
+ The class `MachineTopology` is deprecated in favor of `machine_topology`.
+ Logger constructors and create functions with the `executor` parameter.
+ The virtual, protected, Dense functions `compute_norm1_impl`, `add_scaled_impl`, etc.
+ Logger events for solvers and criterion without the additional `implicit_tau_sq` parameter.
+ The global `gko::solver::default_krylov_dim`, use instead `gko::solver::gmres_default_krylov_dim`.

### Added features

+ Adds a batch::BatchLinOp class that forms a base class for batched linear operators such as batched matrix formats, solver and preconditioners [#1379](#1379)
+ Adds a batch::MultiVector class that enables operations such as dot, norm, scale on batched vectors [#1371](#1371)
+ Adds a batch::Dense matrix format that stores batched dense matrices and provides gemv operations for these dense matrices. [#1413](#1413)
+ Adds a batch::Ell matrix format that stores batched Ell matrices and provides spmv operations for these batched Ell matrices. [#1416](#1416) [#1437](#1437)
+ Add a batch::Bicgstab solver (class, core, and reference kernels) that enables iterative solution of batched linear systems [#1438](#1438).
+ Add device kernels (CUDA, HIP, and DPCPP) for batch::Bicgstab solver. [#1443](#1443).
+ New MC64 reordering algorithm which optimizes the diagonal product or sum of a matrix by permuting the rows, and computes additional scaling factors for equilibriation [#1120](#1120)
+ New interface for (non-symmetric) permutation and scaled permutation of Dense and Csr matrices [#1415](#1415)
+ LU and Cholesky Factorizations can now be separated into their factors [#1432](#1432)
+ New symbolic LU factorization algorithm that is optimized for matrices with an almost-symmetric sparsity pattern [#1445](#1445)
+ Sorting kernels for SparsityCsr on all backends [#1343](#1343)
+ Allow passing pre-generated local solver as factory parameter for the distributed Schwarz preconditioner [#1426](#1426)
+ Add DPCPP kernels for Partition [#1034](#1034), and CSR's `check_diagonal_entries` and `add_scaled_identity` functionality [#1436](#1436)
+ Adds a helper function to create a partition based on either local sizes, or local ranges [#1227](#1227)
+ Add function to compute arithmetic mean of dense and distributed vectors [#1275](#1275)
+ Adds `icpx` compiler supports [#1350](#1350)
+ All backends can be built simultaneously [#1333](#1333)
+ Emits a CMake warning in downstream projects that use different compilers than the installed Ginkgo [#1372](#1372)
+ Reordering algorithms in sparse_blas benchmark [#1354](#1354)
+ Benchmarks gained an `-allocator` parameter to specify device allocators [#1385](#1385)
+ Benchmarks gained an `-input_matrix` parameter that initializes the input JSON based on the filename [#1387](#1387)
+ Benchmark inputs can now be reordered as a preprocessing step [#1408](#1408)


### Improvements

+ Significantly improve Cholesky factorization performance [#1366](#1366)
+ Improve parallel build performance [#1378](#1378)
+ Allow constrained parallel test execution using CTest resources [#1373](#1373)
+ Use arithmetic type more inside mixed precision ELL [#1414](#1414)
+ Most factory parameters of factory type no longer need to be constructed explicitly via `.on(exec)` [#1336](#1336) [#1439](#1439)
+ Improve ParILU(T)/ParIC(T) convergence by using more appropriate atomic operations [#1434](#1434)

### Fixes

+ Fix an over-allocation for OpenMP reductions [#1369](#1369)
+ Fix DPCPP's common-kernel reduction for empty input sizes [#1362](#1362)
+ Fix several typos in the API and documentation [#1348](#1348)
+ Fix inconsistent `Threads` between generations [#1388](#1388)
+ Fix benchmark median condition [#1398](#1398)
+ Fix HIP 5.6.0 compilation [#1411](#1411)
+ Fix missing destruction of rand_generator from cuda/hip [#1417](#1417)
+ Fix PAPI logger destruction order [#1419](#1419)
+ Fix TAU logger compilation [#1422](#1422)
+ Fix relative criterion to not iterate if the residual is already zero [#1079](#1079)
+ Fix memory_order invocations with C++20 changes [#1402](#1402)
+ Fix `check_diagonal_entries_exist` report correctly when only missing diagonal value in the last rows. [#1440](#1440)
+ Fix checking OpenMPI version in cross-compilation settings [#1446](#1446)
+ Fix false-positive deprecation warnings in Ginkgo, especially for the old Rcm (it doesn't emit deprecation warnings anymore as a result but is still considered deprecated) [#1444](#1444)


### Related PR: #1451

v1.6.0

Toggle v1.6.0's commit message

Verified

This commit was created on GitHub.com and signed with GitHub’s verified signature. The key has expired.
Merge Release 1.6.0

Release 1.6.0 of Ginkgo.

The Ginkgo team is proud to announce the new Ginkgo minor release 1.6.0. This release brings new features such as:
- Several building blocks for GPU-resident sparse direct solvers like symbolic
  and numerical LU and Cholesky factorization, ...,
- A distributed Schwarz preconditioner,
- New FGMRES and GCR solvers,
- Distributed benchmarks for the SpMV operation, solvers, ...
- Support for non-default streams in the CUDA and HIP backends,
- Mixed precision support for the CSR SpMV,
- A new profiling logger which integrates with NVTX, ROCTX, TAU and VTune to
  provide internal Ginkgo knowledge to most HPC profilers!

and much more.

If you face an issue, please first check our [known issues page](https://github.com/ginkgo-project/ginkgo/wiki/Known-Issues) and the [open issues list](https://github.com/ginkgo-project/ginkgo/issues) and if you do not find a solution, feel free to [open a new issue](https://github.com/ginkgo-project/ginkgo/issues/new/choose) or ask a question using the [github discussions](https://github.com/ginkgo-project/ginkgo/discussions).

Supported systems and requirements:
+ For all platforms, CMake 3.13+
+ C++14 compliant compiler
+ Linux and macOS
  + GCC: 5.5+
  + clang: 3.9+
  + Intel compiler: 2018+
  + Apple Clang: 14.0 is tested. Earlier versions might also work.
  + NVHPC: 22.7+
  + Cray Compiler: 14.0.1+
  + CUDA module: CUDA 9.2+ or NVHPC 22.7+
  + HIP module: ROCm 4.5+
  + DPC++ module: Intel OneAPI 2021.3+ with oneMKL and oneDPL. Set the CXX compiler to `dpcpp`.
+ Windows
  + MinGW: GCC 5.5+
  + Microsoft Visual Studio: VS 2019+
  + CUDA module: CUDA 9.2+, Microsoft Visual Studio
  + OpenMP module: MinGW.

### Version Support Changes
+ ROCm 4.0+ -> 4.5+ after [#1303](#1303)
+ Removed Cygwin pipeline and support [#1283](#1283)

### Interface Changes
+ Due to internal changes, `ConcreteExecutor::run` will now always throw if the corresponding module for the `ConcreteExecutor` is not build [#1234](#1234)
+ The constructor of `experimental::distributed::Vector` was changed to only accept local vectors as `std::unique_ptr` [#1284](#1284)
+ The default parameters for the `solver::MultiGrid` were improved. In particular, the smoother defaults to one iteration of `Ir` with `Jacobi` preconditioner, and the coarse grid solver uses the new direct solver with LU factorization. [#1291](#1291) [#1327](#1327)
+ The `iteration_complete` event gained a more expressive overload with additional parameters, the old overloads were deprecated. [#1288](#1288) [#1327](#1327)

### Deprecations
+ Deprecated less expressive `iteration_complete` event. Users are advised to now implement the function `void iteration_complete(const LinOp* solver, const LinOp* b, const LinOp* x, const size_type& it, const LinOp* r, const LinOp* tau, const LinOp* implicit_tau_sq, const array<stopping_status>* status, bool stopped)` [#1288](#1288)

### Added Features
+ A distributed Schwarz preconditioner. [#1248](#1248)
+ A GCR solver [#1239](#1239)
+ Flexible Gmres solver [#1244](#1244)
+ Enable Gmres solver for distributed matrices and vectors [#1201](#1201)
+ An example that uses Kokkos to assemble the system matrix [#1216](#1216)
+ A symbolic LU factorization allowing the `gko::experimental::factorization::Lu` and `gko::experimental::solver::Direct` classes to be used for matrices with non-symmetric sparsity pattern [#1210](#1210)
+ A numerical Cholesky factorization [#1215](#1215)
+ Symbolic factorizations in host-side operations are now wrapped in a host-side `Operation` to make their execution visible to loggers. This means that profiling loggers and benchmarks are no longer missing a separate entry for their runtime [#1232](#1232)
+ Symbolic factorization benchmark [#1302](#1302)
+ The `ProfilerHook` logger allows annotating the Ginkgo execution (apply, operations, ...) for profiling frameworks like NVTX, ROCTX and TAU. [#1055](#1055)
+ `ProfilerHook::created_(nested_)summary` allows the generation of a lightweight runtime profile over all Ginkgo functions written to a user-defined stream [#1270](#1270) for both host and device timing functionality [#1313](#1313)
+ It is now possible to enable host buffers for MPI communications at runtime even if the compile option `GINKGO_FORCE_GPU_AWARE_MPI` is set. [#1228](#1228)
+ A stencil matrices generator (5-pt, 7-pt, 9-pt, and 27-pt) for benchmarks [#1204](#1204)
+ Distributed benchmarks (multi-vector blas, SpMV, solver) [#1204](#1204)
+ Benchmarks for CSR sorting and lookup [#1219](#1219)
+ A timer for MPI benchmarks that reports the longest time [#1217](#1217)
+ A `timer_method=min|max|average|median` flag for benchmark timing summary [#1294](#1294)
+ Support for non-default streams in CUDA and HIP executors [#1236](#1236)
+ METIS integration for nested dissection reordering [#1296](#1296)
+ SuiteSparse AMD integration for fillin-reducing reordering [#1328](#1328)
+ Csr mixed-precision SpMV support [#1319](#1319)
+ A `with_loggers` function for all `Factory` parameters [#1337](#1337)

### Improvements
+ Improve naming of kernel operations for loggers [#1277](#1277)
+ Annotate solver iterations in `ProfilerHook` [#1290](#1290)
+ Allow using the profiler hooks and inline input strings in benchmarks [#1342](#1342)
+ Allow passing smart pointers in place of raw pointers to most matrix functions. This means that things like `vec->compute_norm2(x.get())` or `vec->compute_norm2(lend(x))` can be simplified to `vec->compute_norm2(x)` [#1279](#1279) [#1261](#1261)
+ Catch overflows in prefix sum operations, which makes Ginkgo's operations much less likely to crash. This also improves the performance of the prefix sum kernel [#1303](#1303)
+ Make the installed GinkgoConfig.cmake file relocatable and follow more best practices [#1325](#1325)

### Fixes
+ Fix OpenMPI version check [#1200](#1200)
+ Fix the mpi cxx type binding by c binding [#1306](#1306)
+ Fix runtime failures for one-sided MPI wrapper functions observed on some OpenMPI versions [#1249](#1249)
+ Disable thread pinning with GPU executors due to poor performance [#1230](#1230)
+ Fix hwloc version detection [#1266](#1266)
+ Fix PAPI detection in non-implicit include directories [#1268](#1268)
+ Fix PAPI support for newer PAPI versions: [#1321](#1321)
+ Fix pkg-config file generation for library paths outside prefix [#1271](#1271)
+ Fix various build failures with ROCm 5.4, CUDA 12, and OneAPI 6 [#1214](#1214), [#1235](#1235), [#1251](#1251)
+ Fix incorrect read for skew-symmetric MatrixMarket files with explicit diagonal entries [#1272](#1272)
+ Fix handling of missing diagonal entries in symbolic factorizations [#1263](#1263)
+ Fix segmentation fault in benchmark matrix construction [#1299](#1299)
+ Fix the stencil matrix creation for benchmarking [#1305](#1305)
+ Fix the additional residual check in IR [#1307](#1307)
+ Fix the cuSPARSE CSR SpMM issue on single strided vector when cuda >= 11.6 [#1322](#1322) [#1331](#1331)
+ Fix Isai generation for large sparsity powers [#1327](#1327)
+ Fix Ginkgo compilation and test with NVHPC >= 22.7 [#1331](#1331)
+ Fix Ginkgo compilation of 32 bit binaries with MSVC [#1349](#1349)

v1.5.0

Toggle v1.5.0's commit message
Release 1.5.0

The Ginkgo team is proud to announce the new Ginkgo minor release 1.5.0. This release brings many important new features such as:

- MPI-based multi-node support for all matrix formats and most solvers;
- full DPC++/SYCL support,
- functionality and interface for GPU-resident sparse direct solvers,
- an interface for wrapping solvers with scaling and reordering applied,
- a new algebraic Multigrid solver/preconditioner,
- improved mixed-precision support,
- support for device matrix assembly,

and much more.

If you face an issue, please first check our [known issues page](https://github.com/ginkgo-project/ginkgo/wiki/Known-Issues) and the [open issues list](https://github.com/ginkgo-project/ginkgo/issues) and if you do not find a solution, feel free to [open a new issue](https://github.com/ginkgo-project/ginkgo/issues/new/choose) or ask a question using the [github discussions](https://github.com/ginkgo-project/ginkgo/discussions).

Supported systems and requirements:
+ For all platforms, CMake 3.13+
+ C++14 compliant compiler
+ Linux and macOS
  + GCC: 5.5+
  + clang: 3.9+
  + Intel compiler: 2018+
  + Apple LLVM: 8.0+
  + NVHPC: 22.7+
  + Cray Compiler: 14.0.1+
  + CUDA module: CUDA 9.2+ or NVHPC 22.7+
  + HIP module: ROCm 4.0+
  + DPC++ module: Intel OneAPI 2021.3 with oneMKL and oneDPL. Set the CXX compiler to `dpcpp`.
+ Windows
  + MinGW and Cygwin: GCC 5.5+
  + Microsoft Visual Studio: VS 2019
  + CUDA module: CUDA 9.2+, Microsoft Visual Studio
  + OpenMP module: MinGW or Cygwin.

Algorithm and important feature additions:
+ Add MPI-based multi-node for all matrix formats and solvers (except GMRES and IDR). ([#676](#676), [#908](#908), [#909](#909), [#932](#932), [#951](#951), [#961](#961), [#971](#971), [#976](#976), [#985](#985), [#1007](#1007), [#1030](#1030), [#1054](#1054), [#1100](#1100), [#1148](#1148))
+ Porting the remaining algorithms (preconditioners like ISAI, Jacobi, Multigrid, ParILU(T) and ParIC(T)) to DPC++/SYCL, update to SYCL 2020, and improve support and performance ([#896](#896), [#924](#924), [#928](#928), [#929](#929), [#933](#933), [#943](#943), [#960](#960), [#1057](#1057), [#1110](#1110),  [#1142](#1142))
+ Add a Sparse Direct interface supporting GPU-resident numerical LU factorization, symbolic Cholesky factorization, improved triangular solvers, and more ([#957](#957), [#1058](#1058), [#1072](#1072), [#1082](#1082))
+ Add a ScaleReordered interface that can wrap solvers and automatically apply reorderings and scalings ([#1059](#1059))
+ Add a Multigrid solver and improve the aggregation based PGM coarsening scheme ([#542](#542), [#913](#913), [#980](#980), [#982](#982),  [#986](#986))
+ Add infrastructure for unified, lambda-based, backend agnostic, kernels and utilize it for some simple kernels ([#833](#833), [#910](#910), [#926](#926))
+ Merge different CUDA, HIP, DPC++ and OpenMP tests under a common interface ([#904](#904), [#973](#973), [#1044](#1044), [#1117](#1117))
+ Add a device_matrix_data type for device-side matrix assembly ([#886](#886), [#963](#963), [#965](#965))
+ Add support for mixed real/complex BLAS operations ([#864](#864))
+ Add a FFT LinOp for all but DPC++/SYCL ([#701](#701))
+ Add FBCSR support for NVIDIA and AMD GPUs and CPUs with OpenMP ([#775](#775))
+ Add CSR scaling ([#848](#848))
+ Add array::const_view and equivalent to create constant matrices from non-const data ([#890](#890))
+ Add a RowGatherer LinOp supporting mixed precision to gather dense matrix rows ([#901](#901))
+ Add mixed precision SparsityCsr SpMV support ([#970](#970))
+ Allow creating CSR submatrix including from (possibly discontinuous) index sets ([#885](#885), [#964](#964))
+ Add a scaled identity addition (M <- aI + bM) feature interface and impls for Csr and Dense ([#942](#942))

Deprecations and important changes:
+ Deprecate AmgxPgm in favor of the new Pgm name. ([#1149](#1149)).
+ Deprecate specialized residual norm classes in favor of a common `ResidualNorm` class ([#1101](#1101))
+ Deprecate CamelCase non-polymorphic types in favor of snake_case versions (like array, machine_topology, uninitialized_array, index_set) ([#1031](#1031), [#1052](#1052))
+ Bug fix: restrict gko::share to rvalue references (*possible interface break*) ([#1020](#1020))
+ Bug fix: when using cuSPARSE's triangular solvers, specifying the factory parameter `num_rhs` is now required when solving for more than one right-hand side, otherwise an exception is thrown ([#1184](#1184)).
+ Drop official support for old CUDA < 9.2 ([#887](#887))

Improved performance additions:
+ Reuse tmp storage in reductions in solvers and add a mutable workspace to all solvers ([#1013](#1013), [#1028](#1028))
+ Add HIP unsafe atomic option for AMD ([#1091](#1091))
+ Prefer vendor implementations for Dense dot, conj_dot and norm2 when available ([#967](#967)).
+ Tuned OpenMP SellP, COO, and ELL SpMV kernels for a small number of RHS ([#809](#809))

Fixes:
+ Fix various compilation warnings ([#1076](#1076), [#1183](#1183), [#1189](#1189))
+ Fix issues with hwloc-related tests ([#1074](#1074))
+ Fix include headers for GCC 12 ([#1071](#1071))
+ Fix for simple-solver-logging example ([#1066](#1066))
+ Fix for potential memory leak in Logger ([#1056](#1056))
+ Fix logging of mixin classes ([#1037](#1037))
+ Improve value semantics for LinOp types, like moved-from state in cross-executor copy/clones ([#753](#753))
+ Fix some matrix SpMV and conversion corner cases ([#905](#905), [#978](#978))
+ Fix uninitialized data ([#958](#958))
+ Fix CUDA version requirement for cusparseSpSM ([#953](#953))
+ Fix several issues within bash-script ([#1016](#1016))
+ Fixes for `NVHPC` compiler support ([#1194](#1194))

Other additions:
+ Simplify and properly name GMRES kernels ([#861](#861))
+ Improve pkg-config support for non-CMake libraries ([#923](#923), [#1109](#1109))
+ Improve gdb pretty printer ([#987](#987), [#1114](#1114))
+ Add a logger highlighting inefficient allocation and copy patterns ([#1035](#1035))
+ Improved and optimized test random matrix generation ([#954](#954), [#1032](#1032))
+ Better CSR strategy defaults ([#969](#969))
+ Add `move_from` to `PolymorphicObject` ([#997](#997))
+ Remove unnecessary device_guard usage ([#956](#956))
+ Improvements to the generic accessor for mixed-precision ([#727](#727))
+ Add a naive lower triangular solver implementation for CUDA ([#764](#764))
+ Add support for int64 indices from CUDA 11 onward with SpMV and SpGEMM ([#897](#897))
+ Add a L1 norm implementation ([#900](#900))
+ Add reduce_add for arrays ([#831](#831))
+ Add utility to simplify Dense View creation from an existing Dense vector ([#1136](#1136)).
+ Add a custom transpose implementation for Fbcsr and Csr transpose for unsupported vendor types ([#1123](#1123))
+ Make IDR random initilization deterministic ([#1116](#1116))
+ Move the algorithm choice for triangular solvers from Csr::strategy_type to a factory parameter ([#1088](#1088))
+ Update CUDA archCoresPerSM ([#1175](#1116))
+ Add kernels for Csr sparsity pattern lookup ([#994](#994))
+ Differentiate between structural and numerical zeros in Ell/Sellp ([#1027](#1027))
+ Add a binary IO format for matrix data ([#984](#984))
+ Add a tuple zip_iterator implementation ([#966](#966))
+ Simplify kernel stubs and declarations ([#888](#888))
+ Simplify GKO_REGISTER_OPERATION with lambdas ([#859](#859))
+ Simplify copy to device in tests and examples ([#863](#863))
+ More verbose output to array assertions ([#858](#858))
+ Allow parallel compilation for Jacobi kernels ([#871](#871))
+ Change clang-format pointer alignment to left ([#872](#872))
+ Various improvements and fixes to the benchmarking framework ([#750](#750), [#759](#759), [#870](#870), [#911](#911), [#1033](#1033), [#1137](#1137))
+ Various documentation improvements ([#892](#892), [#921](#921), [#950](#950), [#977](#977), [#1021](#1021), [#1068](#1068), [#1069](#1069), [#1080](#1080), [#1081](#1081), [#1108](#1108), [#1153](#1153), [#1154](#1154))
+ Various CI improvements ([#868](#868), [#874](#874), [#884](#884), [#889](#889), [#899](#899), [#903](#903),  [#922](#922), [#925](#925), [#930](#930), [#936](#936), [#937](#937), [#958](#958), [#882](#882), [#1011](#1011), [#1015](#1015), [#989](#989), [#1039](#1039), [#1042](#1042), [#1067](#1067), [#1073](#1073), [#1075](#1075), [#1083](#1083), [#1084](#1084), [#1085](#1085), [#1139](#1139), [#1178](#1178), [#1187](#1187))

v1.4.0

Toggle v1.4.0's commit message

Verified

This commit was created on GitHub.com and signed with GitHub’s verified signature. The key has expired.
Merge release 1.4.0 to master

Release 1.4.0 to master

The Ginkgo team is proud to announce the new Ginkgo minor release 1.4.0. This
release brings most of the Ginkgo functionality to the Intel DPC++ ecosystem
which enables Intel-GPU and CPU execution. The only Ginkgo features which have
not been ported yet are some preconditioners.

Ginkgo's mixed-precision support is greatly enhanced thanks to:
1. The new Accessor concept, which allows writing kernels featuring on-the-fly
memory compression, among other features. The accessor can be used as
header-only, see the [accessor BLAS benchmarks repository](https://github.com/ginkgo-project/accessor-BLAS/tree/develop) as a usage example.
2. All LinOps now transparently support mixed-precision execution. By default,
this is done through a temporary copy which may have a performance impact but
already allows mixed-precision research.

Native mixed-precision ELL kernels are implemented which do not see this cost.
The accessor is also leveraged in a new CB-GMRES solver which allows for
performance improvements by compressing the Krylov basis vectors. Many other
features have been added to Ginkgo, such as reordering support, a new IDR
solver, Incomplete Cholesky preconditioner, matrix assembly support (only CPU
for now), machine topology information, and more!

Supported systems and requirements:
+ For all platforms, cmake 3.13+
+ C++14 compliant compiler
+ Linux and MacOS
  + gcc: 5.3+, 6.3+, 7.3+, all versions after 8.1+
  + clang: 3.9+
  + Intel compiler: 2018+
  + Apple LLVM: 8.0+
  + CUDA module: CUDA 9.0+
  + HIP module: ROCm 3.5+
  + DPC++ module: Intel OneAPI 2021.3. Set the CXX compiler to `dpcpp`.
+ Windows
  + MinGW and Cygwin: gcc 5.3+, 6.3+, 7.3+, all versions after 8.1+
  + Microsoft Visual Studio: VS 2019
  + CUDA module: CUDA 9.0+, Microsoft Visual Studio
  + OpenMP module: MinGW or Cygwin.


Algorithm and important feature additions:
+ Add a new DPC++ Executor for SYCL execution and other base utilities
  [#648](#648), [#661](#661), [#757](#757), [#832](#832)
+ Port matrix formats, solvers and related kernels to DPC++. For some kernels,
  also make use of a shared kernel implementation for all executors (except
  Reference). [#710](#710), [#799](#799), [#779](#779), [#733](#733), [#844](#844), [#843](#843), [#789](#789), [#845](#845), [#849](#849), [#855](#855), [#856](#856)
+ Add accessors which allow multi-precision kernels, among other things.
  [#643](#643), [#708](#708)
+ Add support for mixed precision operations through apply in all LinOps. [#677](#677)
+ Add incomplete Cholesky factorizations and preconditioners as well as some
  improvements to ILU. [#672](#672), [#837](#837), [#846](#846)
+ Add an AMGX implementation and kernels on all devices but DPC++.
  [#528](#528), [#695](#695), [#860](#860)
+ Add a new mixed-precision capability solver, Compressed Basis GMRES
  (CB-GMRES). [#693](#693), [#763](#763)
+ Add the IDR(s) solver. [#620](#620)
+ Add a new fixed-size block CSR matrix format (for the Reference executor).
  [#671](#671), [#730](#730)
+ Add native mixed-precision support to the ELL format. [#717](#717), [#780](#780)
+ Add Reverse Cuthill-McKee reordering [#500](#500), [#649](#649)
+ Add matrix assembly support on CPUs. [#644](#644)
+ Extends ISAI from triangular to general and spd matrices. [#690](#690)

Other additions:
+ Add the possibility to apply real matrices to complex vectors.
  [#655](#655), [#658](#658)
+ Add functions to compute the absolute of a matrix format. [#636](#636)
+ Add symmetric permutation and improve existing permutations.
  [#684](#684), [#657](#657), [#663](#663)
+ Add a MachineTopology class with HWLOC support [#554](#554), [#697](#697)
+ Add an implicit residual norm criterion. [#702](#702), [#818](#818), [#850](#850)
+ Row-major accessor is generalized to more than 2 dimensions and a new
  "block column-major" accessor has been added. [#707](#707)
+ Add an heat equation example. [#698](#698), [
F438
#706](#706)
+ Add ccache support in CMake and CI. [#725](#725), [#739](#739)
+ Allow tuning and benchmarking variables non intrusively. [#692](#692)
+ Add triangular solver benchmark [#664](#664)
+ Add benchmarks for BLAS operations [#772](#772), [#829](#829)
+ Add support for different precisions and consistent index types in benchmarks.
  [#675](#675), [#828](#828)
+ Add a Github bot system to facilitate development and PR management.
  [#667](#667), [#674](#674), [#689](#689), [#853](#853)
+ Add Intel (DPC++) CI support and enable CI on HPC systems. [#736](#736), [#751](#751), [#781](#781)
+ Add ssh debugging for Github Actions CI. [#749](#749)
+ Add pipeline segmentation for better CI speed. [#737](#737)


Changes:
+ Add a Scalar Jacobi specialization and kernels. [#808](#808), [#834](#834), [#854](#854)
+ Add implicit residual log for solvers and benchmarks. [#714](#714)
+ Change handling of the conjugate in the dense dot product. [#755](#755)
+ Improved Dense stride handling. [#774](#774)
+ Multiple improvements to the OpenMP kernels performance, including COO,
an exclusive prefix sum, and more. [#703](#703), [#765](#765), [#740](#740)
+ Allow specialization of submatrix and other dense creation functions in solvers. [#718](#718)
+ Improved Identity constructor and treatment of rectangular matrices. [#646](#646)
+ Allow CUDA/HIP executors to select allocation mode. [#758](#758)
+ Check if executors share the same memory. [#670](#670)
+ Improve test install and smoke testing support. [#721](#721)
+ Update the JOSS paper citation and add publications in the documentation.
  [#629](#629), [#724](#724)
+ Improve the version output. [#806](#806)
+ Add some utilities for dim and span. [#821](#821)
+ Improved solver and preconditioner benchmarks. [#660](#660)
+ Improve benchmark timing and output. [#669](#669), [#791](#791), [#801](#801), [#812](#812)


Fixes:
+ Sorting fix for the Jacobi preconditioner. [#659](#659)
+ Also log the first residual norm in CGS [#735](#735)
+ Fix BiCG and HIP CSR to work with complex matrices. [#651](#651)
+ Fix Coo SpMV on strided vectors. [#807](#807)
+ Fix segfault of extract_diagonal, add short-and-fat test. [#769](#769)
+ Fix device_reset issue by moving counter/mutex to device. [#810](#810)
+ Fix `EnableLogging` superclass. [#841](#841)
+ Support ROCm 4.1.x and breaking HIP_PLATFORM changes. [#726](#726)
+ Decreased test size for a few device tests. [#742](#742)
+ Fix multiple issues with our CMake HIP and RPATH setup.
  [#712](#712), [#745](#745), [#709](#709)
+ Cleanup our CMake installation step. [#713](#713)
+ Various simplification and fixes to the Windows CMake setup. [#720](#720), [#785](#785)
+ Simplify third-party integration. [#786](#786)
+ Improve Ginkgo device arch flags management. [#696](#696)
+ Other fixes and improvements to the CMake setup.
  [#685](#685), [#792](#792), [#705](#705), [#836](#836)
+ Clarification of dense norm documentation [#784](#784)
+ Various development tools fixes and improvements [#738](#738), [#830](#830), [#840](#840)
+ Make multiple operators/constructors explicit. [#650](#650), [#761](#761)
+ Fix some issues, memory leaks and warnings found by MSVC.
  [#666](#666), [#731](#731)
+ Improved solver memory estimates and consistent iteration counts [#691](#691)
+ Various logger improvements and fixes [#728](#728), [#743](#743), [#754](#754)
+ Fix for ForwardIterator requirements in iterator_factory. [#665](#665)
+ Various benchmark fixes. [#647](#647), [#673](#673), [#722](#722)
+ Various CI fixes and improvements. [#642](#642), [#641](#641), [#795](#795), [#783](#783), [#793
10000
](#793), [#852](#852)

Related PR: #866

v1.3.0

Toggle v1.3.0's commit message
Ginkgo version 1.3.0 release.

The Ginkgo team is proud to announce the new minor release of Ginkgo version
1.3.0. This release brings CUDA 11 support, changes the default C++ standard to
be C++14 instead of C++11, adds a new Diagonal matrix format and capacity for
diagonal extraction, significantly improves the CMake configuration output
format, adds the Ginkgo paper which got accepted into the Journal of Open Source
Software (JOSS), and fixes multiple issues.

Supported systems and requirements:
+ For all platforms, cmake 3.9+
+ Linux and MacOS
  + gcc: 5.3+, 6.3+, 7.3+, all versions after 8.1+
  + clang: 3.9+
  + Intel compiler: 2017+
  + Apple LLVM: 8.0+
  + CUDA module: CUDA 9.0+
  + HIP module: ROCm 2.8+
+ Windows
  + MinGW and Cygwin: gcc 5.3+, 6.3+, 7.3+, all versions after 8.1+
  + Microsoft Visual Studio: VS 2017 15.7+
  + CUDA module: CUDA 9.0+, Microsoft Visual Studio
  + OpenMP module: MinGW or Cygwin.

The current known issues can be found in the [known issues page](https://github.com/ginkgo-project/ginkgo/wiki/Known-Issues).

Additions:
+ Add paper for Journal of Open Source Software (JOSS). [#479](#479)
+ Add a DiagonalExtractable interface. [#563](#563)
+ Add a new diagonal Matrix Format. [#580](#580)
+ Add Cuda11 support. [#603](#603)
+ Add information output after CMake configuration. [#610](#610)
+ Add a new preconditioner export example. [#595](#595)
+ Add a new cuda-memcheck CI job. [#592](#592)

Changes:
+ Use unified memory in CUDA debug builds. [#621](#621)
+ Improve `BENCHMARKING.md` with more detailed info. [#619](#619)
+ Use C++14 standard instead of C++11. [#611](#611)
+ Update the Ampere sm information and CudaArchitectureSelector. [#588](#588)

Fixes:
+ Fix documentation warnings and errors. [#624](#624)
+ Fix warnings for diagonal matrix format. [#622](#622)
+ Fix criterion factory parameters in CUDA. [#586](#586)
+ Fix the norm-type in the examples. [#612](#612)
+ Fix the WAW race in OpenMP is_sorted_by_column_index. [#617](#617)
+ Fix the example's exec_map by creating the executor only if requested. [#602](#602)
+ Fix some CMake warnings. [#614](#614)
+ Fix Windows building documentation. [#601](#601)
+ Warn when CXX and CUDA host compiler do not match. [#607](#607)
+ Fix reduce_add, prefix_sum, and doc-build. [#593](#593)
+ Fix find_library(cublas) issue on machines installing multiple cuda. [#591](#591)
+ Fix allocator in sellp read. [#589](#589)
+ Fix the CAS with HIP and NVIDIA backends. [#585](#585)

Deletions:
+ Remove unused preconditioner parameter in LowerTrs. [#587](#587)

v1.2.0

Toggle v1.2.0's commit message
Version 1.2.0 release.

The Ginkgo team is proud to announce the new minor release of Ginkgo version
1.2.0. This release brings full HIP support to Ginkgo, new preconditioners
(ParILUT, ISAI), conversion between double and float for all LinOps, and many
more features and fixes.

Supported systems and requirements:
+ For all platforms, cmake 3.9+
+ Linux and MacOS
  + gcc: 5.3+, 6.3+, 7.3+, all versions after 8.1+
  + clang: 3.9+
  + Intel compiler: 2017+
  + Apple LLVM: 8.0+
  + CUDA module: CUDA 9.0+
  + HIP module: ROCm 2.8+
+ Windows
  + MinGW and CygWin: gcc 5.3+, 6.3+, 7.3+, all versions after 8.1+
  + Microsoft Visual Studio: VS 2017 15.7+
  + CUDA module: CUDA 9.0+, Microsoft Visual Studio
  + OpenMP module: MinGW or CygWin.

The current known issues can be found in the [known issues page](https://github.com/ginkgo-project/ginkgo/wiki/Known-Issues).

Here are the main additions to the Ginkgo library. Other thematic additions are listed below.
+ Add full HIP support to Ginkgo [#344](#344), [#357](#357), [#384](#384), [#373](#373), [#391](#391), [#396](#396), [#395](#395), [#393](#393), [#404](#404), [#439](#439), [#443](#443), [#567](#567)
+ Add a new ISAI preconditioner [#489](#489), [#502](#502), [#512](#512), [#508](#508), [#520](#520)
+ Add support for ParILUT and ParICT factorization with ILU preconditioners [#400](#400)
+ Add a new BiCG solver [#438](#438)
+ Add a new permutation matrix format [#352](#352), [#469](#469)
+ Add CSR SpGEMM support [#386](#386), [#398](#398), [#418](#418), [#457](#457)
+ Add CSR SpGEAM support [#556](#556)
+ Make all solvers and preconditioners transposable [#535](#535)
+ Add CsrBuilder and CooBuilder for intrusive access to matrix arrays [#437](#437)
+ Add a standard-compliant allocator based on the Executors [#504](#504)
+ Support conversions for all LinOp between double and float [#521](#521)
+ Add a new boolean to the CUDA and HIP executors to control DeviceReset (default off) [#557](#557)
+ Add a relaxation factor to IR to represent Richardson Relaxation [#574](#574)
+ Add two new stopping criteria, for relative (to `norm(b)`) and absolute residual norm [#577](#577)

+ Templatize all examples to simplify changing the precision [#513](#513)
+ Add a new adaptive precision block-Jacobi example [#507](#507)
+ Add a new IR example [#522](#522)
+ Add a new Mixed Precision Iterative Refinement example [#525](#525)
+ Add a new example on iterative trisolves in ILU preconditioning [#526](#526), [#536](#536), [#550](#550)

+ Auto-detect compilation settings based on environment [#435](#435), [#537](#537)
+ Add SONAME to shared libraries [#524](#524)
+ Add clang-cuda support [#543](#543)

+ Add sorting, searching and merging kernels for GPUs [#403](#403), [#428](#428), [#417](#417), [#455](#455)
+ Add `gko::as` support for smart pointers [#493](#493)
+ Add setters and getters for criterion factories [#527](#527)
+ Add a new method to check whether a solver uses `x` as an initial guess [#531](#531)
+ Add contribution guidelines [#549](#549)

+ Improve the classical CSR strategy's performance [#401](#401)
+ Improve the CSR automatical strategy [#407](#407), [#559](#559)
+ Memory, speed improvements to the ELL kernel [#411](#411)
+ Multiple improvements and fixes to ParILU [#419](#419), [#427](#427), [#429](#429), [#456](#456), [#544](#544)
+ Fix multiple issues with GMRES [#481](#481), [#523](#523), [#575](#575)
+ Optimize OpenMP matrix conversions [#505](#505)
+ Ensure the linearity of the ILU preconditioner [#506](#506)
+ Fix IR's use of the advanced apply [#522](#522)
+ Fix empty matrices conversions and add tests [#560](#560)

+ Fix complex number support in our math header [#410](#410)
+ Fix CUDA compatibility of the main ginkgo header [#450](#450)
+ Fix isfinite issues [#465](#465)
+ Fix the Array::view memory leak and the array/view copy/move [#485](#485)
+ Fix typos preventing use of some interface functions [#496](#496)
+ Fix the `gko::dim` to abide to the C++ standard [#498](#498)
+ Simplify the executor copy interface [#516](#516)
+ Optimize intermediate storage for Composition [#540](#540)
+ Provide an initial guess for relevant Compositions [#561](#561)
+ Better management of nullptr as criterion [#562](#562)
+ Fix the norm calculations for complex support [#564](#564)

+ Use the return value of the atomic operations in our wrappers [#405](#405)
+ Improve the portability of warp lane masks [#422](#422)
+ Extract thread ID computation into a separate function [#464](#464)
+ Reorder kernel parameters for consistency [#474](#474)
+ Fix the use of `pragma unroll` in HIP [#492](#492)

+ Fix the Ginkgo CMake installation files [#414](#414), [#553](#553)
+ Fix the Windows compilation [#415](#415)
+ Always use demangled types in error messages [#434](#434), [#486](#486)
+ Add CUDA header dependency to appropriate tests [#452](#452)
+ Fix several sonarqube or compilation warnings [#453](#453), [#463](#463), [#532](#532), [#569](#569)
+ Add shuffle tests [#460](#460)
+ Fix MSVC C2398 error [#490](#490)
+ Fix missing interface tests in test install [#558](#558)

+ Add better norm support in the benchmarks [#377](#377)
+ Add CUDA 10.1 generic SpMV support in benchmarks [#468](#468), [#473](#473)
+ Add sparse library ILU in benchmarks [#487](#487)
+ Add overhead benchmarking capacities [#501](#501)
+ Allow benchmarking from a matrix list file [#503](#503)
+ Fix benchmarking issue with JSON and non-finite numbers [#514](#514)
+ Fix benchmark logger crashers with OpenMP [#565](#565)

+ Improvements to the CI setup with HIP compilation [#421](#421), [#466](#466)
+ Add MacOSX CI support [#470](#470), [#488](#488)
+ Add Windows CI support [#471](#471), [#488](#488), [#510](#510), [#566](#566)
+ Use sanitizers instead of valgrind [#476](#476)
+ Add automatic container generation and update facilities [#499](#499)
+ Fix the CI parallelism settings [#517](#517), [#538](#538), [#539](#539)
+ Make the codecov patch check informational [#519](#519)
+ Add support for LLVM sanitizers with improved thread sanitizer support [#578](#578)

+ Add an assertion for sparsity pattern equality [#416](#416)
+ Add core and reference multiprecision tests support [#448](#448)
+ Speed up GPU tests by avoiding device reset [#467](#467)
+ Change test matrix location string [#494](#494)

+ Add Ginkgo badges from our tools [#413](#413)
+ Update the `create_new_algorithm.sh` script [#420](#420)
+ Bump copyright and improve license management [#436](#436), [#433](#433)
+ Set clang-format minimum requirement [#441](#441), [#484](#484)
+ Update git-cmake-format [#446](#446), [#484](#484)
+ Disable the development tools by default [#442](#442)
+ Add a script for automatic header formatting [#447](#447)
+ Add GDB pretty printer for `gko::Array` [#509](#509)
+ Improve compilation speed [#533](#533)
+ Add editorconfig support [#546](#546)
+ Add a compile-time check for header self-sufficiency [#552](#552)

v1.1.1

Toggle v1.1.1's commit message
Minor release v1.1.1.

This version of Ginkgo provides a few fixes in Ginkgo's core routines. The
supported systems and requirements are unchanged from version 1.1.0.

+ Improve Ginkgo's installation and fix the `test_install` step ([#406](#406)),
+ Fix some documentation issues ([#406](#406)),
+ Fix multiple code issues reported by sonarqube ([#406](#406)),
+ Update the git-cmake-format repository ([#399](#399)),
+ Improve the global update header script ([#390](#390)),
+ Fix broken bounds checks ([#388](#388)),
+ Fix CSR strategies and improve performance ([#379](#379)),
+ Fix a small typo in the stencil examples ([#381](#381)),
+ Fix ELL error on small matrices ([#375](#375)),
+ Fix SellP read function ([#374](#374)),
+ Add factorization support in `create_new_algorithm.sh`  ([#371](#371))
0