8000 GitHub - lumia431/reaction: A lightweight, header-only, high-performance reactive programming framework for C++20.
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

lumia431/reaction

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

17 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Reaction: Modern C++ Reactive Programming Framework

C++20 Header-only CMake ReactiveX TMP MVVM

Reaction is a blazing-fast, modern C++20 header-only reactive framework that brings React/Vue-style dataflow to native C++ – perfect for UI Dataflow, Game logic, Financial Services, Real-time calculation and more.

πŸš€ Performance Optimized

  • Zero-cost abstractions through template metaprogramming
  • Minimal runtime overhead with smart change propagation
  • Propagation efficiency at the level of millions per second

πŸ”— Intelligent Dependency Management

  • Automatic DAG detection and cycle prevention
  • Fine-grained change propagation control
  • Configurable caching strategies

πŸ›‘οΈ Safety Guarantees

  • Compile-time type checking with C++20 concepts
  • Safe value semantics throughout the framework
  • Framework manages object lifetime internally

πŸ” Comparison: QProperty vs RxCpp vs Reaction

Feature / Metric 🟩 QProperty (Qt6) 🟨 RxCpp πŸŸ₯ Reaction
Expression Support βœ… setBinding(), but only single-layer βœ… Supports chained map, combine_latest, etc. βœ…βœ… Fully supports deep nested expressions
Expression Nesting Depth ❌ Limited to one layer ⚠️ Supports nesting, but verbose βœ… Unlimited depth with automatic dependency tracking
Update Propagation Manual propagation per layer Reactive push chain per layer Automatic DAG-based propagation with pruning
Dependency Tracking ❌ Manual ⚠️ Manual via operator chaining βœ… Automatic via lazy evaluation capturing dependencies
Performance (Update Delay) βœ… Fast (O(1) propagation) ❌ Slow (heap allocations and nested chaining) βœ…βœ… Fast (pruned update, lazy eval, diffing)
Memory Usage βœ… Very low (stack + signals) ❌ High (many heap-allocated observables) ⚠️ Moderate (DAG storage, optimized with small object opt.)
Syntax Simplicity βœ… Simple (setBinding, value()) ❌ Verbose template syntax βœ… Clean expression templates, close to natural syntax
Type Support βœ… Built-ins and registered custom types βœ… Template-based, supports any type βœ… Type-erased or templated support for any combination
Container Support βœ… Can be used in containers βœ… Can compose multiple observables βœ… Supports container expressions (e.g. map/filter outputs)
Threading Model UI-thread default, manual safety for signals βœ… Multi-threaded pipelines βœ… Main thread default, pluggable lock strategies
Error Handling ❌ None βœ… Robust error flow (on_error_resume_next) βœ… Error node propagation, pluggable failure strategy
Debuggability ⚠️ Lambdas harder to trace ❌ Difficult due to complex types βœ… Trackable dependencies, observable IDs, chain tracing
Template Instance Size βœ… Small ❌ Huge (template explosion) βœ… Optimized with type-erasure or instance deduplication
Build Time βœ… Fast ❌ Very slow for large expressions βœ… Separated headers, controllable instantiation
Learning Curve βœ… Low (Qt-style usage) ❌ Steep (functional style) ⚠️ Medium (understanding type deduction + expression design)
Use Case Fit UI property binding, light state syncing Asynchronous pipelines, stream logic UI + state modeling + expression trees with complex logic

πŸ“Š Performance Benchmarks

Comparative performance results against rxcpp (tested on 2025-06-14):

Deep Dependency Test (Tree Structure, Depth=10)

Framework Avg. Time (ns) Iterations Relative Speed
reaction 68.3 9,803,835 1,663x faster
rxcpp 113,571 6,290 (baseline)

Wide Dependency Test (10,000 Nodes)

Framework Avg. Time (ns) Iterations Relative Speed
reaction 261,448 2,626 2.76x faster
rxcpp 721,404 960 (baseline)

Key Findings:

  1. Deep dependency scenarios: ~1,663x faster than rxcpp
  2. Wide dependency scenarios: ~2.76x faster than rxcpp
  3. Test Environment:
    • 8-core CPU @ 2.8GHz
    • 32KB L1 Data Cache
    • 4MB L2 Unified Cache
    • Linux 5.15.0-78-generic

πŸ“¦ Requirements

  • Compiler: C++20 compatible (GCC 10+, Clang 12+, MSVC 19.30+)
  • Build System: CMake 3.15+

πŸ›  Installation

To build and install the reaction reactive framework, follow the steps below:

git clone https://github.com/lumia431/reaction.git && cd reaction
cmake -B build
cmake --build build/
cmake --install build/ --prefix /your/install/path

After installation, you can include and link against reaction in your own CMake-based project:

find_package(reaction REQUIRED)

πŸš€ Quick Start

#include <reaction/reaction.h>
#include <iostream>
#include <iomanip>
#include <cmath>

int main() {
    using namespace reaction;

    // 1. Reactive variables for stock prices
    auto buyPrice = var(100.0).setName("buyPrice");      // Price at which stock was bought
    auto currentPrice = var(105.0);                      // Current market price

    // 2. Use 'calc' to compute profit or loss amount
    auto profit = calc([&]() {
        return currentPrice() - buyPrice();
    });

    // 3. Use 'expr' to compute percentage gain/loss
    auto profitPercent = expr(std::abs(currentPrice - buyPrice) / buyPrice * 100);

    // 4. Use 'action' to print the log whenever values change
    auto logger = action([&]() {
        std::cout << std::fixed << std::setprecision(2);
        std::cout << "[Stock Update] Current Price: $" << currentPrice()
                  << ", Profit: $" << profit()
                  << " (" << profitPercent() << "%)\n";
    });

    // Simulate price changes
    currentPrice.value(110.0).value(95.0);  // Stock price increases
    buyPrice.value(90.0);                   // Buy price adjusted

    return 0;
}

πŸ“– Basic Usage

1. Reactive Variables: var

Define reactive state variables with var<T>.

auto a = reaction::var(1);         // int variable
auto b = reaction::var(3.14);      // double variable
  • get value:
auto val = a.get();
  • assignment:
a.value(2);

2. Derived Computation: calc

Use calc to create reactive computations based on one or more var instances.

  • Lambda Capture Style:
auto a = reaction::var(1);
auto b = reaction::var(3.14);
auto sum = reaction::calc([=]() {
    return a() + b();  // Retrieve current values using a() and b()
});
  • Parameter Binding Style (High Performance):
auto ds = reaction::calc([](auto aa, auto bb) {
    return std::to_string(aa) + std::to_string(bb);
}, a, b);  // Dependencies: a and b

3. Declarative Expression: expr

expr provides a clean and concise syntax to declare reactive expressions. The result automatically updates when any dependent variable changes.

auto a = reaction::var(1);
auto b = reaction::var(2);
auto result = reaction::expr(a + b * 3);  // result updates automatically when 'a' or 'b' change

4. Reactive Side Effects: action

Register actions to perform side effects whenever the observed variables change.

int val = 10;
auto a = reaction::var(1);
auto dds = reaction::action([&val]() {
    val = a();
});

Ofcourse, to get high performance can use Parameter Binding Style.

int val = 10;
auto a = reaction::var(1);
auto dds = reaction::action([&val](auto aa) {
    val = aa;
}, a);

5. Reactive Struct Fields

For complex types with reactive fields allow you to define struct-like variables whose members are individually reactive.

Here's an example of a PersonField class:

class PersonField : public reaction::FieldBase {
public:
    PersonField(std::string name, int age):
        m_name(reaction::field(name)),
        m_age(reaction::field(age)){}

    std::string getName() const { return m_name.get(); }
    void setName(const std::string &name) { m_name.value(name); }
    int getAge() const { return m_age.get(); }
    void setAge(int age) { m_age.value(age); }

private:
    reaction::Var<std::string> m_name;
    reaction::Var<int> m_age;
};

auto p = reaction::var(PersonField{"Jack", 18});
auto action = reaction::action(
    []() {
        std::cout << "Action Trigger , name = " << p().getName() << " age = " << p().getAge() << '\n';
    });

p->setName("Jackson"); // Action Trigger
p->setAge(28);         // Action Trigger

6. Copy and move semantics support

auto a = reaction::var(1);
auto b = reaction::var(3.14);
auto ds = reaction::calc([]() { return a() + b(); });
auto ds_copy = ds;
auto ds_move = std::move(ds);
EXPECT_FALSE(static_cast<bool>(ds));

7. Resetting Nodes and Dependencies

The reaction framework allows you to reset a computation node by replacing its computation function. This mechanism is useful when the result needs to be recalculated using a different logic or different dependencies after the node has been initially created.

Note: The return value type cannot be changed

Below is an example that demonstrates the reset functionality:

TEST(TestReset, ReactionTest) {
    auto a = reaction::var(1);
    auto b = reaction::var(std::string{"2"});
    auto ds = reaction::calc([]() { return std::to_string(a()); });
    ds.reset([=]() { return b() + "set"; });

    v.value("3");
    EXPECT_EQ(ds.get(), "3set");

    EXPECT_THROW(ds.reset([=]() { return a(); }), std::runtime_error);  // return type changed
    EXPECT_THROW(ds.reset([=]() { return ds(); }), std::runtime_error); // cycle dependent
}

8. Trigger Mode

The reaction framework supports various triggering mode to control when reactive computations are re-evaluated. This example demonstrates three mode:

  1. Value Change Trigger: The reactive computation is triggered only when the underlying value actually changes.
  2. Filter Trigger: The reactive computation is triggered when the value crosses a specified condition.
  3. Always Trigger: (Not explicitly shown in this example) Always triggers regardless of whether the value has changed.

The trigger Mode can be specified by the type parameter

using namespace reaction;
auto stockPrice = var(100.0);
auto profit = expr(stockPrice() - 100.0);   // defalut ChangeTrigger
auto assignAction = action<AlwaysTrig>([=]() {
    std::cout << "Checky assign, price = " << stockPrice() <<'\n';
});
auto sellAction = action<FilterTrig>([=]() {
    std::cout << "It's time to sell, profit = " << profit() <<'\n';
});
sellAction.filter([=]() {
    return profit() > 5.0;
});
*stockPrice = 100.0; // assignAction trigger
*stockPrice = 101.0; // assignAction, profit trigger
*stockPrice = 106.0; // all trigger

You can even define a trigger mode yourself in your code, just include the checkTrig method:

struct MyTrig {
    bool checkTrig() {
        // do something
        return true;
    }
};
auto a = var(1);
auto b = expr<MyTrig>(a + 1);

9. Invalid Strategies

In the reaction framework, all data sources obtained by users are actually in the form of weak references, and their actual memory is managed in the observer map. Users can manually call the close method, so that all dependent data sources will also be closed.

auto a = reaction::var(1);
auto b = reaction::var(2);
auto dsA = reaction::calc([=]() { return a(); });
auto dsB = reaction::calc([=]() { return dsA() + b(); });
dsA.close(); //dsB will automatically close, cause dsB dependents dsA.
EXPECT_FALSE(static_cast<bool>(dsA));
EXPECT_FALSE(static_cast<bool>(dsB));

However, for scenarios where the lifecycle of a weak reference acquired by user ends, the reaction framework makes several strategy for different scenarios.

  • DirectCloseStrategy: The node is immediately closed (made invalid) when any of its dependencies become invalid.

  • KeepCalcStrategy: The node continues to recalculate, its dependencies work normally.

  • LastValStrategy: The node retains the last valid, its dependencies use the value to calculate.

Below is a concise example that illustrates all three strategies:

{
    auto a = var(1);
    auto b = calc([]() { return a(); });
    {
        auto temp = calc<AlwaysTrig, CloseStra>([]() { return a(); });
        b.set([](auto t) { return t; }, temp);
    }
    // temp lifecycle ends, b will end too.
    EXPECT_FALSE(static_cast<bool>(b));
}
{
    auto a = var(1);
    auto b = calc([]() { return a(); });
    {
        auto temp = calc<AlwaysTrig, KeepStra>([]() { return a(); }); // default is KeepStra
        b.set([](auto t) { return t; }, temp);
    }
    // temp lifecycle ends, b not be influenced.
    EXPECT_TRUE(static_cast<bool>(b));
    EXPECT_EQ(b.get(), 1);
    a.value(2);
    EXPECT_EQ(b.get(), 2);
}
{
    auto a = var(1);
    auto b = calc([]() { return a(); });
    {
        auto temp = calc<AlwaysTrig, LastStra>([]() { return a(); });
        b.set([](auto t) { return t; }, temp);
    }
    // temp lifecycle ends, b use its last val to calculate.
    EXPECT_TRUE(static_cast<bool>(b));
    EXPECT_EQ(b.get(), 1);
    a.value(2);
    EXPECT_EQ(b.get(), 1);
}

Likewise, you can define a strategy yourself in your code, just include the handleInvalid method:

struct MyStra {
    void handleInvalid() {
        std::cout << "Invalid" << std::endl;
    }
};
auto a = var(1);
auto b = expr<AlwaysTrig, MyStra>(a + 1);

10. Reactive Containers

Reaction supports reactive versions of standard stl containers (vector, list, set, map, etc.).

using namespace reaction;
constexpr int STUDENT_COUNT = 5;
// 1. Student grades container - using vector to store VarExpr
std::vector<Var<double>> grades;
for (int i = 0; i < STUDENT_COUNT; ++i) {
    grades.push_back(make(70.0 + i * 5));
}
// 2. Grade statistics container - using list to store CalcExpr
std::list<Calc<double>> stats;
stats.push_back(make([&] {
    double sum = 0;
    for (auto &grade : grades)
        sum += grade();
    return sum / grades.size();
}));
stats.push_back(make([&] {
    double max = grades[0].get();
    for (auto &grade : grades)
        max = std::max(max, grade());
    return max;
}));
// 3. Grade change monitors - using set to store Action
std::set<Calc<Void>> monitors;
for (int i = 0; i < STUDENT_COUNT; ++i) {
    monitors.insert(make([i, &grades] {
        std::cout << "[Monitor] Student " << i << " grade updated: " << grades[i]() << "\n";
    }));
}
// 4. Grade level mapping - using map to store CalcExpr
std::map<int, Calc<const char *>> gradeLevels;
for (int i = 0; i < STUDENT_COUNT; ++i) {
    gradeLevels.insert({i, make([i, &grades] {
                            double g = grades[i]();
                            if (g >= 90) return "A";
                            if (g >= 80) return "B";
                            if (g >= 70) return "C";
                            return "D";
                        })});
}

Contributions Welcome!

We welcome all forms of contributions to make Reaction even better:

How to Contribute

  1. Report Issues πŸ› Found a bug? Open an Issue with detailed reproduction steps.

  2. Suggest Features πŸ’‘ Have an idea? Propose new features through GitHub Discussions.

  3. Submit Pull Requests πŸ‘©πŸ’» Follow our workflow:

    git clone https://github.com/lumia431/reaction.git
    cd reaction
    # Create a feature branch (feat/xxx or fix/xxx)
    # Submit PR against `dev` branch

About

A lightweight, header-only, high-performance reactive programming framework for C++20.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published
0