8000 GitHub - scarlet0703/LoRA-Sub-DRS: Official PyTorch implementation of our CVPR 2025 paper, "LoRA Subtraction for Drift-Resistant Space in Exemplar-Free Continual Learning."
[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to content

Official PyTorch implementation of our CVPR 2025 paper, "LoRA Subtraction for Drift-Resistant Space in Exemplar-Free Continual Learning."

Notifications You must be signed in to change notification settings

scarlet0703/LoRA-Sub-DRS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LoRA Subtraction for Drift-Resistant Space in Exemplar-Free Continual Learning

This repository contains the official implementation of our CVPR 2025 paper, "LoRA Subtraction for Drift-Resistant Space in Exemplar-Free Continual Learning."

cover

1.Requisite

This code is implemented in PyTorch, and we perform the experiments under the following environment settings:

  • python = 3.11.4
  • torch = 2.0.1
  • torchvision = 0.15.2
  • timm = 0.6.7

The code has been tested on Linux Platform with a GPU (RTX3080 Ti).

If you see the following error, you may need to install a PyTorch package compatible with your infrastructure.

RuntimeError: No HIP GPUs are available or ImportError: libtinfo.so.5: cannot open shared object file: No such file or directory

For example if your infrastructure only supports CUDA == 11.1, you may need to install the PyTorch package using CUDA11.1.

pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html

If you see the following error, you can resolve it by installing a lower version of timm, such as pip install timm==0.6.7.

TypeError: 'PretrainedCfg' object is not subscriptable

2.Dataset

  • Create a folder data/
  • CIFAR 100: should automatically be downloaded
  • ImageNet-R: retrieve from link. After unzipping, place it into data/ folder

3.Training

The JSON configuration files in configs/ are preconfigured for 20-task scenarios. You can modify init_cls, increment and total_sessions parameters in configs/[dataset].json to configure different CIL settings.

  • CIFAR100:

    python main.py --config configs/cifar100.json 
    
  • ImageNet-R:

    python main.py --config configs/imagenetr.json 
    

4.Citation

@inproceedings{liu2025lora,
  title={LoRA Subtraction for Drift-Resistant Space in Exemplar-Free Continual Learning},
  author={Liu, Xuan and Chang, Xiaobin},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  year={2025}
}

5.Reference

We appreciate the following repositories for their contributions of useful components and functions to our work.

About

Official PyTorch implementation of our CVPR 2025 paper, "LoRA Subtraction for Drift-Resistant Space in Exemplar-Free Continual Learning."

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

0